Environmental Fate, Exposure and Toxicity of New Emerging Pollutant: Tetrabromobisphenol A.

Q4 Pharmacology, Toxicology and Pharmaceutics Toxicology International Pub Date : 2022-05-20 DOI:10.18311/ti/2022/v29i1/27859
Prince Sharma, K. Sharma, Mandeep Singh, P. Chadha
{"title":"Environmental Fate, Exposure and Toxicity of New Emerging Pollutant: Tetrabromobisphenol A.","authors":"Prince Sharma, K. Sharma, Mandeep Singh, P. Chadha","doi":"10.18311/ti/2022/v29i1/27859","DOIUrl":null,"url":null,"abstract":"Brominated Flame Retardants (BFRs) are being utilized to reduce the flammability of plastics, textiles, and electronics. They differ in their chemical properties and structures, and it is conventional that these distinctions alter their biological interactions as well as toxicity. Tetra-Bromo-Bis-Phenol A (TBBPA) is a pervasive environmental contaminant that is seen in both abiotic and biotic matrices. This review discusses the occurrence, distribution, and fate of TBBPA from source to the environment. Recent studies have raised worry over the potentially harmful implications of TBBPA exposure in humans and wildlife, prompting its characterization under group 2A “Probably carcinogenic to humans” by the International Agency for Research on Cancer. Worldwide there are no present confinements on its production and usage. On the other hand, very little information is accessible with respect to its toxicity to humans and aquatic animals. More research is required to characterize human exposure to TBBPA in and around production facilities, as well as in e-waste recycling regions. So as to safeguard the environment and human health, detailed investigations are urgently needed, especially on tracking the exposure pathways which may affect the workers and local residents around the exposure sites.","PeriodicalId":23205,"journal":{"name":"Toxicology International","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/ti/2022/v29i1/27859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

Abstract

Brominated Flame Retardants (BFRs) are being utilized to reduce the flammability of plastics, textiles, and electronics. They differ in their chemical properties and structures, and it is conventional that these distinctions alter their biological interactions as well as toxicity. Tetra-Bromo-Bis-Phenol A (TBBPA) is a pervasive environmental contaminant that is seen in both abiotic and biotic matrices. This review discusses the occurrence, distribution, and fate of TBBPA from source to the environment. Recent studies have raised worry over the potentially harmful implications of TBBPA exposure in humans and wildlife, prompting its characterization under group 2A “Probably carcinogenic to humans” by the International Agency for Research on Cancer. Worldwide there are no present confinements on its production and usage. On the other hand, very little information is accessible with respect to its toxicity to humans and aquatic animals. More research is required to characterize human exposure to TBBPA in and around production facilities, as well as in e-waste recycling regions. So as to safeguard the environment and human health, detailed investigations are urgently needed, especially on tracking the exposure pathways which may affect the workers and local residents around the exposure sites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新出现的污染物四溴双酚A的环境命运、暴露和毒性。
溴化阻燃剂(BFR)被用于降低塑料、纺织品和电子产品的可燃性。它们的化学性质和结构不同,通常这些区别会改变它们的生物相互作用和毒性。四溴双酚A(TBBPA)是一种普遍存在于非生物和生物基质中的环境污染物。这篇综述讨论了TBBPA从来源到环境的发生、分布和命运。最近的研究引起了人们对TBBPA暴露对人类和野生动物的潜在有害影响的担忧,促使国际癌症研究机构将其定性为2A组“可能对人类致癌”。在世界范围内,目前对其生产和使用没有限制。另一方面,关于其对人类和水生动物的毒性,可获得的信息很少。需要更多的研究来描述人类在生产设施及其周围以及电子垃圾回收区暴露于TBBPA的情况。为了保护环境和人类健康,迫切需要进行详细的调查,特别是追踪可能影响暴露地点周围工人和当地居民的暴露途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology International
Toxicology International Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
0.60
自引率
0.00%
发文量
23
期刊介绍: Toxicology International is a peer-reviewed International Research Journal published bi-annually by the Society of Toxicology, India. The Journal is concerned with various disciplines of Toxicology including man, animals, plants and environment and publishes research, review and general articles besides opinions, comments, news-highlights and letters to editor.
期刊最新文献
Toxicological Impact of Nanoparticles on Reproductive System: A Review Studies on Histopathological Alterations in the Brain and Gill, of Cyprinus carpio Exposed to the Insecticide Afidopyropen Green Synthesis of Stable and Reusable Zinc Nanoparticle Adsorbents for the Removal of Carcinogenic Heavy Metals in Aqueous Solution Assessment of Anti-Carcinogenic Potential of Neem (Azadirachta indica) Leaf Extract Loaded Calcium Phosphate Nanoparticles against Experimentally Induced Mammary Carcinogenesis in Rats Role of Phytochemicals against Diabetic Nephropathy: An Insight into Molecular Receptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1