Comparing Algorithms for Estimation of Aboveground Biomass in Pinus yunnanensis

IF 2.4 2区 农林科学 Q1 FORESTRY Forests Pub Date : 2023-08-28 DOI:10.3390/f14091742
Tianbao Huang, Guanglong Ou, Hui Xu, Xiaoli Zhang, Yong Wu, Zihao Liu, Fuyan Zou, Chen Zhang, Can Xu
{"title":"Comparing Algorithms for Estimation of Aboveground Biomass in Pinus yunnanensis","authors":"Tianbao Huang, Guanglong Ou, Hui Xu, Xiaoli Zhang, Yong Wu, Zihao Liu, Fuyan Zou, Chen Zhang, Can Xu","doi":"10.3390/f14091742","DOIUrl":null,"url":null,"abstract":"Comparing algorithms are crucial for enhancing the accuracy of remote sensing estimations of forest biomass in regions with high heterogeneity. Herein, Sentinel 2A, Sentinel 1A, Landsat 8 OLI, and Digital Elevation Model (DEM) were selected as data sources. A total of 12 algorithms, including 7 types of learners, were utilized for estimating the aboveground biomass (AGB) of Pinus yunnanensis forest. The results showed that: (1) The optimal algorithm (Extreme Gradient Boosting, XGBoost) was selected as the meta-model (referred to as XGBoost-stacking) of the stacking ensemble algorithm, which integrated 11 other algorithms. The R2 value was improved by 0.12 up to 0.61, and RMSE was decreased by 4.53 Mg/ha down to 39.34 Mg/ha compared to the XGBoost. All algorithms consistently showed severe underestimation of AGB in the Pinus yunnanensis forest of Yunnan Province when AGB exceeded 100 Mg/ha. (2) XGBoost-Stacking, XGBoost, BRNN (Bayesian Regularized Neural Network), RF (Random Forest), and QRF (Quantile Random Forest) have good sensitivity to forest AGB. QRNN (Quantile Regression Neural Network), GP (Gaussian Process), and EN (Elastic Network) have more outlier data and their robustness was poor. SVM-RBF (Radial Basis Function Kernel Support Vector Machine), k-NN (K Nearest Neighbors), and SGB (Stochastic Gradient Boosting) algorithms have good robustness, but their sensitivity was poor, and QRF algorithms and BRNN algorithm can estimate low values with higher accuracy. In conclusion, the XGBoost-stacking, XGBoost, and BRNN algorithms have shown promising application prospects in remote sensing estimation of forest biomass. This study could provide a reference for selecting the suitable algorithm for forest AGB estimation.","PeriodicalId":12339,"journal":{"name":"Forests","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f14091742","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Comparing algorithms are crucial for enhancing the accuracy of remote sensing estimations of forest biomass in regions with high heterogeneity. Herein, Sentinel 2A, Sentinel 1A, Landsat 8 OLI, and Digital Elevation Model (DEM) were selected as data sources. A total of 12 algorithms, including 7 types of learners, were utilized for estimating the aboveground biomass (AGB) of Pinus yunnanensis forest. The results showed that: (1) The optimal algorithm (Extreme Gradient Boosting, XGBoost) was selected as the meta-model (referred to as XGBoost-stacking) of the stacking ensemble algorithm, which integrated 11 other algorithms. The R2 value was improved by 0.12 up to 0.61, and RMSE was decreased by 4.53 Mg/ha down to 39.34 Mg/ha compared to the XGBoost. All algorithms consistently showed severe underestimation of AGB in the Pinus yunnanensis forest of Yunnan Province when AGB exceeded 100 Mg/ha. (2) XGBoost-Stacking, XGBoost, BRNN (Bayesian Regularized Neural Network), RF (Random Forest), and QRF (Quantile Random Forest) have good sensitivity to forest AGB. QRNN (Quantile Regression Neural Network), GP (Gaussian Process), and EN (Elastic Network) have more outlier data and their robustness was poor. SVM-RBF (Radial Basis Function Kernel Support Vector Machine), k-NN (K Nearest Neighbors), and SGB (Stochastic Gradient Boosting) algorithms have good robustness, but their sensitivity was poor, and QRF algorithms and BRNN algorithm can estimate low values with higher accuracy. In conclusion, the XGBoost-stacking, XGBoost, and BRNN algorithms have shown promising application prospects in remote sensing estimation of forest biomass. This study could provide a reference for selecting the suitable algorithm for forest AGB estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云南松地上生物量估算的比较算法
比较算法是提高异质性高地区森林生物量遥感估算精度的关键。本文选取Sentinel 2A、Sentinel 1A、Landsat 8 OLI和Digital Elevation Model (DEM)作为数据源。采用7种学习器共12种算法对云南松林地上生物量(AGB)进行估算。结果表明:(1)选择最优算法(Extreme Gradient Boosting, XGBoost)作为叠加集成算法的元模型(简称XGBoost-stacking),该算法集成了其他11种算法。与XGBoost相比,R2值提高了0.12至0.61,RMSE降低了4.53 Mg/ha至39.34 Mg/ha。当AGB超过100 Mg/ha时,所有算法均显示云南松林AGB严重低估。(2) XGBoost- stacking、XGBoost、BRNN(贝叶斯正则化神经网络)、RF(随机森林)和QRF(分位数随机森林)对森林AGB具有较好的敏感性。QRNN(分位数回归神经网络)、GP(高斯过程)和EN(弹性网络)的离群数据较多,鲁棒性较差。SVM-RBF (Radial Basis Function Kernel Support Vector Machine)、K - nn (K Nearest Neighbors)和SGB (Stochastic Gradient Boosting)算法鲁棒性较好,但灵敏度较差,QRF算法和BRNN算法对低值的估计精度较高。综上所述,XGBoost-stacking、XGBoost和BRNN算法在森林生物量遥感估算中具有广阔的应用前景。该研究可为选择合适的森林AGB估计算法提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Long-Term Patterns in Forest Soil CO2 Flux in a Pacific Northwest Temperate Rainforest Assessment of Climate Change and Land Use/Land Cover Effects on Aralia elata Habitat Suitability in Northeastern China Determination of the Static Bending Properties of Green Beech and Oak Wood by the Frequency Resonance Technique Variations in Physiological and Biochemical Characteristics of Kalidium foliatum Leaves and Roots in Two Saline Habitats in Desert Region Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1