Heat-Treated Wood Reinforced High Density Polyethylene Composites

IF 0.7 4区 农林科学 Q4 MATERIALS SCIENCE, PAPER & WOOD Drvna Industrija Pub Date : 2021-07-22 DOI:10.5552/drvind.2021.1971
K. Karakuş, D. Aydemir, G. Gunduz, F. Mengeloglu
{"title":"Heat-Treated Wood Reinforced High Density Polyethylene Composites","authors":"K. Karakuş, D. Aydemir, G. Gunduz, F. Mengeloglu","doi":"10.5552/drvind.2021.1971","DOIUrl":null,"url":null,"abstract":"This study investigated the effect of untreated and heat-treated ash and black pine wood flour concentrations on the selected properties of high density polyethylene (HDPE) composites. HDPE and wood flour were used as thermoplastic matrix and filler, respectively. The blends of HDPE and wood fl our were compounded using single screw extruder and test samples were prepared through injection molding. Mechanical properties like tensile strength (TS), tensile modulus (TM), elongation at break (EatB), fl exural strength (FS), fl exural modulus (FM) and impact strength (IS) of manufactured composites were determined. Wood fl our concentrations have significantly increased density, FS, TM and FM and hardness of composites while reducing TS, EatB and IS. Heat-treated ash and black pine fl our reinforced HDPE composites had higher mechanical properties than untreated ones. Composites showed two main decomposition peaks; one coming from ash wood flour (353-370 °C) and black pine wood fl our (373-376 °C), the second one from HDPE degradation (469-490 °C). SEM images showed improved dispersion of heat-treated ash and black pine wood flour. The obtained results showed that both the untreated and heat-treated ash/black pine wood flour have an important potential in the manufacture of HDPE composites.","PeriodicalId":11427,"journal":{"name":"Drvna Industrija","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drvna Industrija","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5552/drvind.2021.1971","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effect of untreated and heat-treated ash and black pine wood flour concentrations on the selected properties of high density polyethylene (HDPE) composites. HDPE and wood flour were used as thermoplastic matrix and filler, respectively. The blends of HDPE and wood fl our were compounded using single screw extruder and test samples were prepared through injection molding. Mechanical properties like tensile strength (TS), tensile modulus (TM), elongation at break (EatB), fl exural strength (FS), fl exural modulus (FM) and impact strength (IS) of manufactured composites were determined. Wood fl our concentrations have significantly increased density, FS, TM and FM and hardness of composites while reducing TS, EatB and IS. Heat-treated ash and black pine fl our reinforced HDPE composites had higher mechanical properties than untreated ones. Composites showed two main decomposition peaks; one coming from ash wood flour (353-370 °C) and black pine wood fl our (373-376 °C), the second one from HDPE degradation (469-490 °C). SEM images showed improved dispersion of heat-treated ash and black pine wood flour. The obtained results showed that both the untreated and heat-treated ash/black pine wood flour have an important potential in the manufacture of HDPE composites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热处理木材增强高密度聚乙烯复合材料
本研究考察了未经处理和热处理的灰分和黑松木粉浓度对高密度聚乙烯(HDPE)复合材料性能的影响。采用HDPE和木粉分别作为热塑性基体和填料。采用单螺杆挤出机对HDPE和木糠共混物进行了复合,并通过注塑成型制备了测试样品。测定了复合材料的拉伸强度(TS)、拉伸模量(TM)、断裂伸长率(EatB)、抗折强度(FS)、抗折模量(FM)和冲击强度(IS)等力学性能。木质素浓度显著提高了复合材料的密度、FS、TM、FM和硬度,降低了复合材料的TS、EatB和IS。热处理后的灰分和黑松纤维增强HDPE复合材料的力学性能优于未经处理的复合材料。复合材料呈现两个主要分解峰;一种来自灰木粉(353-370℃)和黑松木粉(373-376℃),另一种来自HDPE降解(469-490℃)。SEM图像显示热处理灰和黑松木粉的分散性得到改善。结果表明,未经处理和热处理的灰分/黑松木粉在HDPE复合材料的制造中具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drvna Industrija
Drvna Industrija MATERIALS SCIENCE, PAPER & WOOD-
CiteScore
1.80
自引率
9.10%
发文量
32
审稿时长
>12 weeks
期刊介绍: "Drvna industrija" ("Wood Industry") journal publishes original scientific and review papers, short notes, professional papers, conference papers, reports, professional information, bibliographical and survey articles and general notes relating to the forestry exploitation, biology, chemistry, physics and technology of wood, pulp and paper and wood components, including production, management and marketing aspects in the woodworking industry.
期刊最新文献
Timber Strength Grading as Necessary Basis for Structural Design in Ex-YU Region Intenzitet toplinske modifikacije topolovine. Dio 1 Bio-Durability and Engineering Characteristics of Heat-Treated Poplar Wood Usporedba reakcijskoga i normalnog drva nekih komercijalnih vrsta drva Modeliranje dizajna boje površine namještaja CNC laserskom modifikacijom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1