{"title":"Sensitivity Analysis of Quality of B-spline Parameterization on Isogeometric Analysis","authors":"Sangamesh Gondegaon, Hari K. Voruganti","doi":"10.13052/EJCM1779-7179.29462","DOIUrl":null,"url":null,"abstract":"Isogeometric analysis (IGA) is a mesh free technique which make use of B-spline basis functions for geometry and field variable representation. Parameterization of B-spline for IGA is the counterpart of meshing as in finite element method (FEM). The objective of parameterization is to find the optimum set of control points for B-spline modelling. The position of control points of a B-spline model has huge effect on IGA results. In this work, the effect of B-spline parameterization on IGA result is presented. One dimensional case of bar with self-weight is solved and compared with exact analytical solution. First fundamental matrix is used as evaluation metric to check the quality of parameterization for 2-D domains. A heat conduction problem of a square domain is presented to study the parameterization effect for 2-D case.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/EJCM1779-7179.29462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Isogeometric analysis (IGA) is a mesh free technique which make use of B-spline basis functions for geometry and field variable representation. Parameterization of B-spline for IGA is the counterpart of meshing as in finite element method (FEM). The objective of parameterization is to find the optimum set of control points for B-spline modelling. The position of control points of a B-spline model has huge effect on IGA results. In this work, the effect of B-spline parameterization on IGA result is presented. One dimensional case of bar with self-weight is solved and compared with exact analytical solution. First fundamental matrix is used as evaluation metric to check the quality of parameterization for 2-D domains. A heat conduction problem of a square domain is presented to study the parameterization effect for 2-D case.