Angelo Raherinirina, Tsilefa Stefana Fandresena, A. R. Hajalalaina, H. Rabetafika, R. Rakotoarivelo, Fontaine Rafamatanantsoa
{"title":"Probabilistic Modelling of COVID-19 Dynamic in the Context of Madagascar","authors":"Angelo Raherinirina, Tsilefa Stefana Fandresena, A. R. Hajalalaina, H. Rabetafika, R. Rakotoarivelo, Fontaine Rafamatanantsoa","doi":"10.4236/OJMSI.2021.93014","DOIUrl":null,"url":null,"abstract":"We propose a probabilistic approach to modelling the propagation of the \ncoronavirus disease 2019 (COVID-19) in Madagascar, with all its specificities. \nWith the strategy of the Malagasy state, which consists of isolating all \nsuspected cases and hospitalized confirmed case, we get an epidemic model with \nseven compartments: susceptible (S), Exposed (E), Infected (I), Asymptomatic \n(A), Hospitalized (H), Cured (C) and Death (D). In addition to the classical \ndeterministic models used in epidemiology, the stochastic model offers a \nnatural representation of the evolution of the COVID-19 epidemic. We inferred the models with the official data provided by the COVID-19 \nCommand Center (CCO) of Madagascar, between March and August 2020. The basic \nreproduction number R0 and the other parameters were estimated \nwith a Bayesian approach. We developed an algorithm that allows having a \ntemporal estimate of this number with confidence intervals. The estimated \nvalues are slightly lower than the international references. Generally, we were \nable to obtain a simple but effective model to describe the spread of the \ndisease.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJMSI.2021.93014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We propose a probabilistic approach to modelling the propagation of the
coronavirus disease 2019 (COVID-19) in Madagascar, with all its specificities.
With the strategy of the Malagasy state, which consists of isolating all
suspected cases and hospitalized confirmed case, we get an epidemic model with
seven compartments: susceptible (S), Exposed (E), Infected (I), Asymptomatic
(A), Hospitalized (H), Cured (C) and Death (D). In addition to the classical
deterministic models used in epidemiology, the stochastic model offers a
natural representation of the evolution of the COVID-19 epidemic. We inferred the models with the official data provided by the COVID-19
Command Center (CCO) of Madagascar, between March and August 2020. The basic
reproduction number R0 and the other parameters were estimated
with a Bayesian approach. We developed an algorithm that allows having a
temporal estimate of this number with confidence intervals. The estimated
values are slightly lower than the international references. Generally, we were
able to obtain a simple but effective model to describe the spread of the
disease.