{"title":"Solving route optimisation problem in logistics distribution through an improved ant colony optimisation algorithm","authors":"Gai-lian Zhang","doi":"10.1504/IJSOI.2017.10002474","DOIUrl":null,"url":null,"abstract":"In this paper, aiming at conventional Ant Colony algorithm's defects and shortcomings, we introduce Genetic Algorithm to improve it. By the GA's reproduction, crossover and mutation operators, the ACA's convergence rate and global searching ability have a significant improvement. Besides, we improve the updating mode of pheromone to enhance the adaptability of ants, the ACA can automatic adjust pheromone residual degree when executing the algorithm for convergence. Besides, introducing a new deterministic searching method will accelerate the heuristic searching method rate. After the description of our improved algorithm, we do two groups of experiments, the results show that our proposed algorithm has a good effect on solving logistics distribution routing optimisation problem, compared with the conventional algorithm, our experiments are on large logistics distribution route sets, the results show that our improved algorithm can get the optimal solution rapidly and accurately, the results are more robust than conventional results.","PeriodicalId":35046,"journal":{"name":"International Journal of Services Operations and Informatics","volume":"8 1","pages":"218"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Services Operations and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSOI.2017.10002474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, aiming at conventional Ant Colony algorithm's defects and shortcomings, we introduce Genetic Algorithm to improve it. By the GA's reproduction, crossover and mutation operators, the ACA's convergence rate and global searching ability have a significant improvement. Besides, we improve the updating mode of pheromone to enhance the adaptability of ants, the ACA can automatic adjust pheromone residual degree when executing the algorithm for convergence. Besides, introducing a new deterministic searching method will accelerate the heuristic searching method rate. After the description of our improved algorithm, we do two groups of experiments, the results show that our proposed algorithm has a good effect on solving logistics distribution routing optimisation problem, compared with the conventional algorithm, our experiments are on large logistics distribution route sets, the results show that our improved algorithm can get the optimal solution rapidly and accurately, the results are more robust than conventional results.
期刊介绍:
The advances in distributed computing and networks make it possible to link people, heterogeneous service providers and physically isolated services efficiently and cost-effectively. As the economic dynamics and the complexity of service operations continue to increase, it becomes a critical challenge to leverage information technology in achieving world-class quality and productivity in the production and delivery of physical goods and services. The IJSOI, a fully refereed journal, provides the primary forum for both academic and industry researchers and practitioners to propose and foster discussion on state-of-the-art research and development in the areas of service operations and the role of informatics towards improving their efficiency and competitiveness.