Controlled Human Malaria Infection Studies in Africa-Past, Present, and Future.

3区 医学 Q2 Medicine Current topics in microbiology and immunology Pub Date : 2024-01-01 DOI:10.1007/82_2022_256
Elizabeth Kibwana, Melissa Kapulu, Philip Bejon
{"title":"Controlled Human Malaria Infection Studies in Africa-Past, Present, and Future.","authors":"Elizabeth Kibwana, Melissa Kapulu, Philip Bejon","doi":"10.1007/82_2022_256","DOIUrl":null,"url":null,"abstract":"<p><p>Controlled human infection studies have contributed significantly to the understanding of pathogeneses and treatment of infectious diseases. In malaria, deliberately infecting humans with malaria parasites was used as a treatment for neurosyphilis in the early 1920s. More recently, controlled human malaria infection (CHMI) has become a valuable, cost-effective tool to fast-track the development and evaluation of new anti-malarial drugs and/or vaccines. CHMI studies have also been used to define host/parasite interactions and immunological correlates of protection. CHMI involves infecting a small number of healthy volunteers with malaria parasites, monitoring their parasitemia and providing anti-malarial treatment when a set threshold is reached. In this review we discuss the introduction, development, and challenges of modern-day Plasmodium falciparum CHMI studies conducted in Africa, and the impact of naturally acquired immunity on infectivity and vaccine efficacy. CHMIs have shown to be an invaluable tool particularly in accelerating malaria vaccine research. Although there are limitations of CHMI studies for estimating public health impacts and for regulatory purposes, their strength lies in proof-of-concept efficacy data at an early stage of development, providing a faster way to select vaccines for further development and providing valuable insights in understanding the mechanisms of immunity to malarial infection.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"337-365"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/82_2022_256","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Controlled human infection studies have contributed significantly to the understanding of pathogeneses and treatment of infectious diseases. In malaria, deliberately infecting humans with malaria parasites was used as a treatment for neurosyphilis in the early 1920s. More recently, controlled human malaria infection (CHMI) has become a valuable, cost-effective tool to fast-track the development and evaluation of new anti-malarial drugs and/or vaccines. CHMI studies have also been used to define host/parasite interactions and immunological correlates of protection. CHMI involves infecting a small number of healthy volunteers with malaria parasites, monitoring their parasitemia and providing anti-malarial treatment when a set threshold is reached. In this review we discuss the introduction, development, and challenges of modern-day Plasmodium falciparum CHMI studies conducted in Africa, and the impact of naturally acquired immunity on infectivity and vaccine efficacy. CHMIs have shown to be an invaluable tool particularly in accelerating malaria vaccine research. Although there are limitations of CHMI studies for estimating public health impacts and for regulatory purposes, their strength lies in proof-of-concept efficacy data at an early stage of development, providing a faster way to select vaccines for further development and providing valuable insights in understanding the mechanisms of immunity to malarial infection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非洲控制的人类疟疾感染研究——过去、现在和未来。
控制性人体感染研究为了解病原体和治疗传染病做出了重大贡献。在疟疾方面,20 世纪 20 年代初,故意让人类感染疟原虫被用来治疗神经梅毒。最近,受控人类疟疾感染(CHMI)已成为快速开发和评估新型抗疟疾药物和/或疫苗的一种有价值、有成本效益的工具。受控人类疟疾感染研究还被用于确定宿主/寄生虫之间的相互作用以及保护的免疫学相关因素。CHMI 包括用疟原虫感染少量健康志愿者,监测他们的寄生虫血症,并在达到设定阈值时提供抗疟治疗。在这篇综述中,我们将讨论在非洲开展的现代恶性疟原虫CHMI研究的引入、发展和挑战,以及自然获得的免疫力对感染性和疫苗疗效的影响。CHMI已被证明是一种宝贵的工具,尤其是在加速疟疾疫苗研究方面。虽然 CHMI 研究在估计公共卫生影响和监管方面存在局限性,但其优势在于在开发的早期阶段就能获得概念验证功效数据,为选择进一步开发的疫苗提供了更快的方法,并为了解疟疾感染的免疫机制提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.
期刊最新文献
Using Passive Antibody Therapies in the Next Pandemic. The Safety Profile of COVID-19 Convalescent Plasma. The Importance of Antibody Titer Determination to the Effective Use of Convalescent Plasma. A Brief History of Polyclonal Antibody Therapies Against Bacterial and Viral Diseases Before COVID-19. Alterations of the AKT Pathway in Sporadic Human Tumors, Inherited Susceptibility to Cancer, and Overgrowth Syndromes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1