Bioactive glass-polycaprolactone fiber membrane and response of dental pulp stem cells in vitro

Q1 Materials Science Biomedical Glasses Pub Date : 2018-12-01 DOI:10.1515/bglass-2018-0011
S. Labbaf, A. B. Houreh, M. Rahimi, Hungkit Ting, J.R. Jones, M. Nasr-Esfahani
{"title":"Bioactive glass-polycaprolactone fiber membrane and response of dental pulp stem cells in vitro","authors":"S. Labbaf, A. B. Houreh, M. Rahimi, Hungkit Ting, J.R. Jones, M. Nasr-Esfahani","doi":"10.1515/bglass-2018-0011","DOIUrl":null,"url":null,"abstract":"Abstract The study reports the fabrication and in vitro biological evaluation of a sol-gel derived bioactive glass (BG) / polycaprolactone (PCL) composite fiber membrane, as a potential candidate for bone regeneration applications. The non woven composite mats were prepared by introducing the glass particles into the electrospinning process. Adding the glass improved the homogeneity of the fibers. The apatite forming ability of the membranes in simulated body fluid were evaluated and showed that hydroxyapatite had formed within 21 days in SBF and completely covered the surface of the membrane. In cell culture, dental pulp stem cells adhered proliferated and produced mineralized matrix on the PCL/BG fiber membrane.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2018-0011","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2018-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract The study reports the fabrication and in vitro biological evaluation of a sol-gel derived bioactive glass (BG) / polycaprolactone (PCL) composite fiber membrane, as a potential candidate for bone regeneration applications. The non woven composite mats were prepared by introducing the glass particles into the electrospinning process. Adding the glass improved the homogeneity of the fibers. The apatite forming ability of the membranes in simulated body fluid were evaluated and showed that hydroxyapatite had formed within 21 days in SBF and completely covered the surface of the membrane. In cell culture, dental pulp stem cells adhered proliferated and produced mineralized matrix on the PCL/BG fiber membrane.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物活性玻璃聚己内酯纤维膜及其对牙髓干细胞的体外反应
摘要本研究报道了溶胶-凝胶衍生的生物活性玻璃(BG)/聚己内酯(PCL)复合纤维膜的制备和体外生物学评价,该膜是骨再生应用的潜在候选者。通过将玻璃颗粒引入静电纺丝工艺制备了非织造复合毡。添加玻璃提高了纤维的均匀性。评估了膜在模拟体液中的磷灰石形成能力,并表明羟基磷灰石在SBF中在21天内形成并完全覆盖了膜的表面。在细胞培养中,粘附的牙髓干细胞在PCL/BG纤维膜上增殖并产生矿化基质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
期刊最新文献
Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering Novel borosilicate bioactive scaffolds with persistent luminescence Modelling the elastic mechanical properties of bioactive glass-derived scaffolds Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities Yttrium doped phosphate-based glasses: structural and degradation analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1