Millimeter-Wave Monopulse Filtenna Array with Directive Dielectric Resonators

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of electromagnetic engineering and science Pub Date : 2023-03-31 DOI:10.26866/jees.2023.2.r.147
Seungkuk Park, J. Park, Moon‐Que Lee
{"title":"Millimeter-Wave Monopulse Filtenna Array with Directive Dielectric Resonators","authors":"Seungkuk Park, J. Park, Moon‐Que Lee","doi":"10.26866/jees.2023.2.r.147","DOIUrl":null,"url":null,"abstract":"This paper presents a new millimeter-wave monopulse dielectric resonator (DR) filtering antenna (filtenna) array based on substrate-integrated waveguide (SIW) technology. The monopulse comparator realized by a square dual-mode (TE102 and TE201) SIW feed cavity uses diagonal irises, of which couplings between the feed and next-stage cavities lead to almost identical filter responses for the sum and difference channels with compact size and a planar single-substrate structure. Both dielectric resonator antennas (DRAs) adopting HEM133 mode for enhanced directivity are implemented with two filters based on SIW. The DR acts as the last resonator and the radiator in the filtenna. The prototype is designed at the Ka-band with a center frequency of 27.65 GHz and an operation bandwidth of 700 MHz. The measurement shows a 15-dB fractional bandwidth of 2.36%, a gain of 10.84 dBi for the sum channel, and a null depth of -15.6 dB for the difference channel.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.2.r.147","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new millimeter-wave monopulse dielectric resonator (DR) filtering antenna (filtenna) array based on substrate-integrated waveguide (SIW) technology. The monopulse comparator realized by a square dual-mode (TE102 and TE201) SIW feed cavity uses diagonal irises, of which couplings between the feed and next-stage cavities lead to almost identical filter responses for the sum and difference channels with compact size and a planar single-substrate structure. Both dielectric resonator antennas (DRAs) adopting HEM133 mode for enhanced directivity are implemented with two filters based on SIW. The DR acts as the last resonator and the radiator in the filtenna. The prototype is designed at the Ka-band with a center frequency of 27.65 GHz and an operation bandwidth of 700 MHz. The measurement shows a 15-dB fractional bandwidth of 2.36%, a gain of 10.84 dBi for the sum channel, and a null depth of -15.6 dB for the difference channel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有定向介质谐振器的毫米波单脉冲滤波天线阵列
提出了一种基于基板集成波导技术的毫米波单脉冲介质谐振器滤波天线阵列。方形双模(TE102和TE201) SIW进给腔实现的单脉冲比较器采用对角虹膜,进给腔和下一级腔之间的耦合使得尺寸紧凑的和差通道和平面单衬底结构的滤波器响应几乎相同。采用HEM133模式增强指向性的介质谐振器天线(DRAs)采用基于SIW的两个滤波器实现。DR在滤波器中充当最后的谐振器和辐射器。原型机设计在ka波段,中心频率为27.65 GHz,工作带宽为700 MHz。测量结果表明,和通道的15 dB分数带宽为2.36%,增益为10.84 dBi,差通道的零深度为-15.6 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
期刊最新文献
Efficient FDTD Simulation for the EM Analysis of Faraday Rotation in the Ionosphere Experimental Results of Magnetic Communication Using the Giant Magnetoimpedance Receiver in Underwater Environments A Separation Method for Electromagnetic Radiation Sources of the Same Frequency Investigation of Pulse Characteristics of a Novel Cylindrically Slotted Cloaked Antenna Time-Domain Measurement Data Accumulation for Slow Moving Point Target Detection in Heavily Cluttered Environments Using CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1