Structure and Phase Formation in Ni + Al Powder Mixture Enclosed in a Steel Cartridge during Hot Gas Extrusion

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-06-21 DOI:10.3103/S1061386223020036
F. F. Galiev, V. D. Berbetcev, O. D. Boyarchenko, I. V. Saikov, A. E. Sytschev, M. I. Alymov
{"title":"Structure and Phase Formation in Ni + Al Powder Mixture Enclosed in a Steel Cartridge during Hot Gas Extrusion","authors":"F. F. Galiev,&nbsp;V. D. Berbetcev,&nbsp;O. D. Boyarchenko,&nbsp;I. V. Saikov,&nbsp;A. E. Sytschev,&nbsp;M. I. Alymov","doi":"10.3103/S1061386223020036","DOIUrl":null,"url":null,"abstract":"<p>Stages of structure/phase formation in Ni + Al powder mixture enclosed in a steel cartridge in the course of hot gas extrusion (HGE) were studied. It was shown that the formation of target NiAl phase is preceded by the appearance of NiAl<sub>3</sub>, Ni<sub>2</sub>Al<sub>3</sub>, and Ni<sub>3</sub>Al phases. It was determined that the phase composition is formed prior to the onset of plastic deformation and retains constant in the course of extrusion process; meanwhile, the structure undergoes the changes, its grains are deformed, taking an elongated shape. It was found that HGE is characterized by a redistribution of elements. It can be assumed that to increase the target phase yield, it is necessary to compensate or eliminate the redistribution of elements.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 2","pages":"150 - 156"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223020036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stages of structure/phase formation in Ni + Al powder mixture enclosed in a steel cartridge in the course of hot gas extrusion (HGE) were studied. It was shown that the formation of target NiAl phase is preceded by the appearance of NiAl3, Ni2Al3, and Ni3Al phases. It was determined that the phase composition is formed prior to the onset of plastic deformation and retains constant in the course of extrusion process; meanwhile, the structure undergoes the changes, its grains are deformed, taking an elongated shape. It was found that HGE is characterized by a redistribution of elements. It can be assumed that to increase the target phase yield, it is necessary to compensate or eliminate the redistribution of elements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热挤压过程中钢筒内Ni + Al粉末混合物的结构与相形成
研究了Ni + Al粉末在钢筒内热挤压过程中组织/相形成的阶段。结果表明,NiAl3、Ni2Al3和Ni3Al相的出现先于目标NiAl相的形成。结果表明,相组成在塑性变形开始前就已形成,并在挤压过程中保持不变;同时,组织发生变化,晶粒变形,呈细长状。发现HGE的特征是元素的再分配。可以认为,为了提高目标相产率,有必要补偿或消除元素的再分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
期刊最新文献
Spatial Gasless Combustion Modes in a Sample with Discrete Structure Finger Formation during Combustion of Granular Mixture Zr + 0.5C in Inert Gas Flow Exploring the Influence of Zinc Doping on Nano Ferrites: A Review of Structural, Dielectric, and Magnetic Studies Self-Propagating High-Temperature Synthesis of MgAlON Using Mg Powder Multifunctional Catalysts Based on High-Entropy Transition Metal Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1