D. Jayaraj, J. Ramkumar, M. Lingaraj, B. Sureshkumar
{"title":"AFSORP: Adaptive Fish Swarm Optimization-Based Routing Protocol for Mobility Enabled Wireless Sensor Network","authors":"D. Jayaraj, J. Ramkumar, M. Lingaraj, B. Sureshkumar","doi":"10.22247/ijcna/2023/218516","DOIUrl":null,"url":null,"abstract":"– Advances in information and communication technology and electronics have led to a surge in interest in mobility-enabled wireless sensor networks (MEWSN). These minuscule sensor nodes collect data, process it, and then transmit it via a radio frequency channel to a central station or sink. Most of the time, MEWSNs are placed in hazardous or difficult-to-access locations. To increase the lifespan of a network, available resources must be utilized as efficiently as possible. The whole network connection collapses if even one node loses power, rendering the deployment's goals moot. Therefore, much MEWSN research has focused on energy efficiency, with energy-efficient routing protocols being a key component. This paper proposes an Adaptive Fish Swarm Optimization-based Routing Protocol (AFSORP) for identifying the best route in MEWSN. AFSORP functions based on the natural characteristics of fish. The two most important steps in AFSORP are chasing and blocking, which respectively seek the optimal route and choose the appropriate route to send data from the source node to the destination node. Standard network performance measurements are used to assess AFSORP with the help of the GNS3 simulator. The results show that AFSORP performs better than the existing routing methods.","PeriodicalId":36485,"journal":{"name":"International Journal of Computer Networks and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22247/ijcna/2023/218516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5
Abstract
– Advances in information and communication technology and electronics have led to a surge in interest in mobility-enabled wireless sensor networks (MEWSN). These minuscule sensor nodes collect data, process it, and then transmit it via a radio frequency channel to a central station or sink. Most of the time, MEWSNs are placed in hazardous or difficult-to-access locations. To increase the lifespan of a network, available resources must be utilized as efficiently as possible. The whole network connection collapses if even one node loses power, rendering the deployment's goals moot. Therefore, much MEWSN research has focused on energy efficiency, with energy-efficient routing protocols being a key component. This paper proposes an Adaptive Fish Swarm Optimization-based Routing Protocol (AFSORP) for identifying the best route in MEWSN. AFSORP functions based on the natural characteristics of fish. The two most important steps in AFSORP are chasing and blocking, which respectively seek the optimal route and choose the appropriate route to send data from the source node to the destination node. Standard network performance measurements are used to assess AFSORP with the help of the GNS3 simulator. The results show that AFSORP performs better than the existing routing methods.