Analysis and research on the constant-rate penetration mechanism of the seabed cone penetration test system

IF 4.7 2区 工程技术 Q1 ENGINEERING, MECHANICAL Frontiers of Mechanical Engineering Pub Date : 2023-06-20 DOI:10.3389/fmech.2023.1110951
Ziqiang Ren, Jia-wang Chen, Jin Guo, Bijin Liu, Xiaohui Hu, Hang Zhou, Hou-Hong Liu, F. Gao
{"title":"Analysis and research on the constant-rate penetration mechanism of the seabed cone penetration test system","authors":"Ziqiang Ren, Jia-wang Chen, Jin Guo, Bijin Liu, Xiaohui Hu, Hang Zhou, Hou-Hong Liu, F. Gao","doi":"10.3389/fmech.2023.1110951","DOIUrl":null,"url":null,"abstract":"The seabed Cone Penetration Test (CPT) system is a common method for investigating offshore soil. This paper focuses on a new subsea CPT method for assessing physical and mechanical properties of marine sediments. The new method enables automatic docking and dismantling of the probe rods underwater. The constant-rate penetration mechanism is the basis and core component of the seabed CPT, allowing the probe rod and cone to penetrate the seafloor sediment. Double hydraulic cylinders are used to meet the high penetration force requirements. To maintain a constant penetration rate of 20 ± 5 mm/s, the model identification of the electro-hydraulic servo system is performed using Simcenter AMESim and MATLAB software, and the relevant transfer function is obtained using the PID method. Based on this transfer function, the sliding mode variable structure controller of the electro-hydraulic servo system is designed to regulate the constant penetration rate of the hydraulic cylinder against varying penetration resistance. In-situ measurements were operated using the new seabed CPT rig in Zhoushan Island. The simulation and testing results confirm that the sliding mode variable structure controller is suitable for controlling the system during actual operation.","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fmech.2023.1110951","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The seabed Cone Penetration Test (CPT) system is a common method for investigating offshore soil. This paper focuses on a new subsea CPT method for assessing physical and mechanical properties of marine sediments. The new method enables automatic docking and dismantling of the probe rods underwater. The constant-rate penetration mechanism is the basis and core component of the seabed CPT, allowing the probe rod and cone to penetrate the seafloor sediment. Double hydraulic cylinders are used to meet the high penetration force requirements. To maintain a constant penetration rate of 20 ± 5 mm/s, the model identification of the electro-hydraulic servo system is performed using Simcenter AMESim and MATLAB software, and the relevant transfer function is obtained using the PID method. Based on this transfer function, the sliding mode variable structure controller of the electro-hydraulic servo system is designed to regulate the constant penetration rate of the hydraulic cylinder against varying penetration resistance. In-situ measurements were operated using the new seabed CPT rig in Zhoushan Island. The simulation and testing results confirm that the sliding mode variable structure controller is suitable for controlling the system during actual operation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海底圆锥贯入试验系统恒速贯入机理分析研究
海底圆锥贯入试验(CPT)系统是研究近海土壤的常用方法。本文重点研究了一种新的海底CPT方法,用于评估海洋沉积物的物理力学性质。这种新方法能够在水下自动对接和拆卸探测棒。恒速穿透机制是海底CPT的基础和核心部件,允许探杆和探锥穿透海底沉积物。双液压缸用于满足高穿透力的要求。为了保持20±5 mm/s的恒定渗透率,使用Simcenter AMESim和MATLAB软件对电液伺服系统进行了模型识别,并使用PID方法获得了相关的传递函数。基于该传递函数,设计了电液伺服系统的滑模变结构控制器,以调节液压缸在不同穿透阻力下的恒定穿透率。在舟山岛使用新型海底CPT钻机进行了现场测量。仿真和测试结果表明,该滑模变结构控制器适用于实际运行中的系统控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Mechanical Engineering
Frontiers of Mechanical Engineering Engineering-Mechanical Engineering
CiteScore
7.20
自引率
6.70%
发文量
731
期刊介绍: Frontiers of Mechanical Engineering is an international peer-reviewed academic journal sponsored by the Ministry of Education of China. The journal seeks to provide a forum for a broad blend of high-quality academic papers in order to promote rapid communication and exchange between researchers, scientists, and engineers in the field of mechanical engineering. The journal publishes original research articles, review articles and feature articles.
期刊最新文献
Causal inference with a mediated proportional hazards regression model. Revolution and challenges in machining processing aimed at carbon reduction Multi-material additive manufacturing-functionally graded materials by means of laser remelting during laser powder bed fusion Review of key technologies of climbing robots A new modeling approach for stress–strain relationship taking into account strain hardening and stored energy by compacted graphite iron evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1