Anna B. Stockstad, E. Gray, S. Sebestyen, Nina K. Lany, R. Kolka, M. Windmuller-Campione
{"title":"Analyzing Trends in Water Table Elevations at the Marcell Experimental Forest, Minnesota, U.S.A.","authors":"Anna B. Stockstad, E. Gray, S. Sebestyen, Nina K. Lany, R. Kolka, M. Windmuller-Campione","doi":"10.33697/AJUR.2020.032","DOIUrl":null,"url":null,"abstract":"Water table fluctuations in peatlands are closely coupled with the local climate setting and drive critical ecosystem processes such as nutrient cycling. In Minnesota, USA, peatlands cover ten percent of the surface area, approximately 2.5 million hectares, some of which are actively managed for forest products. To explore the relationship between peatland water tables and precipitation, long-term data (1961 to 2019) were used from the Marcell Experimental Forest in northern Minnesota. Starting in 1961, water table data from seven peatlands, including two types of peatlands (bogs and fens), were measured. We used the Theil-Sen estimator to test for monotonic trends in mean monthly water table elevations for individual peatlands and monthly precipitation. Water levels in bogs were both more variable and had mean water table elevations that were closer to the surface. Individual trends of water table elevations differed among peatlands. Water table elevations increased over time in three of the bogs studied and decreased over time in two of the bogs studied. Trends within fens were notably nonlinear across time. No significant linear trend was found for mean monthly precipitation between 1961 and 2019. These results highlight differences in peatlands types, local physiography, and the importance of understanding how changes in long-term dynamics coupled with changing current conditions will influence the effects of water table fluctuations on ecosystem services. The variability of water table elevations in bogs poses potential difficulties in modeling these ecosystems or creating adaptive management plans. KEYWORDS: Peatlands; Hydrology; Water tables; Bogs; Fens; Monitoring; Minnesota; Climate Change","PeriodicalId":72177,"journal":{"name":"American journal of undergraduate research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of undergraduate research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33697/AJUR.2020.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Water table fluctuations in peatlands are closely coupled with the local climate setting and drive critical ecosystem processes such as nutrient cycling. In Minnesota, USA, peatlands cover ten percent of the surface area, approximately 2.5 million hectares, some of which are actively managed for forest products. To explore the relationship between peatland water tables and precipitation, long-term data (1961 to 2019) were used from the Marcell Experimental Forest in northern Minnesota. Starting in 1961, water table data from seven peatlands, including two types of peatlands (bogs and fens), were measured. We used the Theil-Sen estimator to test for monotonic trends in mean monthly water table elevations for individual peatlands and monthly precipitation. Water levels in bogs were both more variable and had mean water table elevations that were closer to the surface. Individual trends of water table elevations differed among peatlands. Water table elevations increased over time in three of the bogs studied and decreased over time in two of the bogs studied. Trends within fens were notably nonlinear across time. No significant linear trend was found for mean monthly precipitation between 1961 and 2019. These results highlight differences in peatlands types, local physiography, and the importance of understanding how changes in long-term dynamics coupled with changing current conditions will influence the effects of water table fluctuations on ecosystem services. The variability of water table elevations in bogs poses potential difficulties in modeling these ecosystems or creating adaptive management plans. KEYWORDS: Peatlands; Hydrology; Water tables; Bogs; Fens; Monitoring; Minnesota; Climate Change