{"title":"Implications of a Catastrophic Refrigeration Failure on the Viability of Cryogenically Stored Samples.","authors":"John G. Day, Katharine H. Childs, G. Stacey","doi":"10.2139/ssrn.4142146","DOIUrl":null,"url":null,"abstract":"Cryopreservation, the use of very low temperatures to preserve structurally intact living cells and tissues, is a key underpinning technology for life science research and medicine. It is employed to ensure the stability of critical biological resources including viruses, bacteria, protists, animal cell cultures, plants, reproductive materials and embryos. Fundamental to ensuring this stability is assuring stability of cryogenic storage temperatures. Here we report the occurrence of a failure in refrigeration in a cryostat holding > 600 strains of cyanobacteria and eukaryotic microalgae. A strategic approach was adopted to assess viability across a cross-section of the biodiversity held, both immediately after the potentially damaging temperature shift and 10 years later, on subsequent cryostorage in liquid-phase nitrogen (∼-196 °C). Furthermore, the event was replicated experimentally and the effects on the viability of cryo-tolerant and cryo-sensitive strains monitored. Our results have significant implications to all users of this storage method and parallels have been drawn with the ongoing development in other fields and in particular, human cell therapy. Based on our practical experience we have made a series of generic recommendations for emergency, remedial and ongoing preventative actions.","PeriodicalId":20781,"journal":{"name":"Protist","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2139/ssrn.4142146","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cryopreservation, the use of very low temperatures to preserve structurally intact living cells and tissues, is a key underpinning technology for life science research and medicine. It is employed to ensure the stability of critical biological resources including viruses, bacteria, protists, animal cell cultures, plants, reproductive materials and embryos. Fundamental to ensuring this stability is assuring stability of cryogenic storage temperatures. Here we report the occurrence of a failure in refrigeration in a cryostat holding > 600 strains of cyanobacteria and eukaryotic microalgae. A strategic approach was adopted to assess viability across a cross-section of the biodiversity held, both immediately after the potentially damaging temperature shift and 10 years later, on subsequent cryostorage in liquid-phase nitrogen (∼-196 °C). Furthermore, the event was replicated experimentally and the effects on the viability of cryo-tolerant and cryo-sensitive strains monitored. Our results have significant implications to all users of this storage method and parallels have been drawn with the ongoing development in other fields and in particular, human cell therapy. Based on our practical experience we have made a series of generic recommendations for emergency, remedial and ongoing preventative actions.
期刊介绍:
Protist is the international forum for reporting substantial and novel findings in any area of research on protists. The criteria for acceptance of manuscripts are scientific excellence, significance, and interest for a broad readership. Suitable subject areas include: molecular, cell and developmental biology, biochemistry, systematics and phylogeny, and ecology of protists. Both autotrophic and heterotrophic protists as well as parasites are covered. The journal publishes original papers, short historical perspectives and includes a news and views section.