Parameter Restrictions for the Sake of Identification: Is There Utility in Asserting That Perhaps a Restriction Holds?

IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY Statistical Science Pub Date : 2020-09-25 DOI:10.1214/23-sts885
P. Gustafson
{"title":"Parameter Restrictions for the Sake of Identification: Is There Utility in Asserting That Perhaps a Restriction Holds?","authors":"P. Gustafson","doi":"10.1214/23-sts885","DOIUrl":null,"url":null,"abstract":"Statistical modeling can involve a tension between assumptions and statistical identification. The law of the observable data may not uniquely determine the value of a target parameter without invoking a key assumption, and, while plausible, this assumption may not be obviously true in the scientific context at hand. Moreover, there are many instances of key assumptions which are untestable, hence we cannot rely on the data to resolve the question of whether the target is legitimately identified. Working in the Bayesian paradigm, we consider the grey zone of situations where a key assumption, in the form of a parameter space restriction, is scientifically reasonable but not incontrovertible for the problem being tackled. Specifically, we investigate statistical properties that ensue if we structure a prior distribution to assert that `maybe' or `perhaps' the assumption holds. Technically this simply devolves to using a mixture prior distribution putting just some prior weight on the assumption, or one of several assumptions, holding. However, while the construct is straightforward, there is very little literature discussing situations where Bayesian model averaging is employed across a mix of fully identified and partially identified models.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-sts885","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Statistical modeling can involve a tension between assumptions and statistical identification. The law of the observable data may not uniquely determine the value of a target parameter without invoking a key assumption, and, while plausible, this assumption may not be obviously true in the scientific context at hand. Moreover, there are many instances of key assumptions which are untestable, hence we cannot rely on the data to resolve the question of whether the target is legitimately identified. Working in the Bayesian paradigm, we consider the grey zone of situations where a key assumption, in the form of a parameter space restriction, is scientifically reasonable but not incontrovertible for the problem being tackled. Specifically, we investigate statistical properties that ensue if we structure a prior distribution to assert that `maybe' or `perhaps' the assumption holds. Technically this simply devolves to using a mixture prior distribution putting just some prior weight on the assumption, or one of several assumptions, holding. However, while the construct is straightforward, there is very little literature discussing situations where Bayesian model averaging is employed across a mix of fully identified and partially identified models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
出于识别的参数限制:断言可能存在限制是否有用?
统计建模可能涉及假设和统计识别之间的紧张关系。在不援引关键假设的情况下,可观测数据定律可能无法唯一地确定目标参数的值,尽管这一假设是合理的,但在当前的科学背景下,这一假设可能并不明显正确。此外,有许多关键假设是不稳定的,因此我们不能依靠数据来解决目标是否合法确定的问题。在贝叶斯范式中,我们考虑了一个灰色地带的情况,其中一个关键假设,以参数空间限制的形式,在科学上是合理的,但对正在解决的问题来说并不是无可争议的。具体来说,我们研究了如果我们构建先验分布来断言“可能”或“可能”假设成立时所产生的统计特性。从技术上讲,这只是简单地转化为使用混合先验分布,只对假设或几个假设中的一个假设施加一些先验权重。然而,尽管该结构很简单,但很少有文献讨论在完全识别和部分识别的模型的混合中使用贝叶斯模型平均的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
期刊最新文献
Variable Selection Using Bayesian Additive Regression Trees. Defining Replicability of Prediction Rules Tracking Truth Through Measurement and the Spyglass of Statistics Replicability Across Multiple Studies Game-Theoretic Statistics and Safe Anytime-Valid Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1