{"title":"Isogeometric Analysis for Tire Simulation at Steady-State Rolling","authors":"Mario A. García, M. Kaliske","doi":"10.2346/TIRE.19.170164","DOIUrl":null,"url":null,"abstract":"\n The use of isogeometric analysis (IGA) in industrial applications has increased in the past years. One of the main advantages is the combination of finite element analysis (FEA) with the capability of representing the exact geometry by means of non-uniform rational B-splines (NURBS). This framework has proven to be an efficient alternative to standard FEA in solid mechanics and fluid dynamics, in cases in which sensitivity to geometry is found. The numerical simulation of rolling tires requires a proper discretization for the curved boundaries and complex cross sections, which often leads to the use of higher-order or cylindrical elements. As remeshing operations are numerically costly in tire models, IGA stands as an attractive alternative for the modeling of rolling tires.\n In this contribution, an arbitrary Lagrangian Eulerian formulation is implemented into IGA to provide the basic tools for the numerical analysis of rolling bodies at steady-state conditions. The solid basis of the formulation allows the employment of standard material models, but tire constructive elements, such as reinforcing layers, require special attention. Streamlines are constructed based on the locations of the integration points, and therefore, linear and nonlinear viscoelastic models can be implemented. Numerical examples highlight the advantage of the new approach of requiring fewer degrees of freedom for an accurate description of the geometry.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/TIRE.19.170164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4
Abstract
The use of isogeometric analysis (IGA) in industrial applications has increased in the past years. One of the main advantages is the combination of finite element analysis (FEA) with the capability of representing the exact geometry by means of non-uniform rational B-splines (NURBS). This framework has proven to be an efficient alternative to standard FEA in solid mechanics and fluid dynamics, in cases in which sensitivity to geometry is found. The numerical simulation of rolling tires requires a proper discretization for the curved boundaries and complex cross sections, which often leads to the use of higher-order or cylindrical elements. As remeshing operations are numerically costly in tire models, IGA stands as an attractive alternative for the modeling of rolling tires.
In this contribution, an arbitrary Lagrangian Eulerian formulation is implemented into IGA to provide the basic tools for the numerical analysis of rolling bodies at steady-state conditions. The solid basis of the formulation allows the employment of standard material models, but tire constructive elements, such as reinforcing layers, require special attention. Streamlines are constructed based on the locations of the integration points, and therefore, linear and nonlinear viscoelastic models can be implemented. Numerical examples highlight the advantage of the new approach of requiring fewer degrees of freedom for an accurate description of the geometry.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.