Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation

A. Susanto, Ibnu Utomo Wahyu Mulyono, Christy Atika Sari, Eko Hari Rachmawanto, De Rosal Ignatius Moses Setiadi, M. K. Sarker
{"title":"Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation","authors":"A. Susanto, Ibnu Utomo Wahyu Mulyono, Christy Atika Sari, Eko Hari Rachmawanto, De Rosal Ignatius Moses Setiadi, M. K. Sarker","doi":"10.11591/ijai.v12.i3.pp1448-1458","DOIUrl":null,"url":null,"abstract":"Although numerous studies have been conducted on handwritten recognition, there is little and non-optimal research on Javanese script recognition due to its limitation to basic characters. Therefore, this research proposes the design of a handwritten Javanese Script recognition method based on twelve layers deep convolutional neural network (DCNN), consisting of four convolutions, two pooling, and five fully connected (FC) layers, with SoftMax classifiers. Five FC layers were proposed in this research to conduct the learning process in stages to achieve better learning outcomes. Due to the limited number of images in the Javanese script dataset, an augmentation process is needed to improve recognition performance. This method obtained 99.65% accuracy using seven types of geometric augmentation and the proposed DCNN model for 120 Javanese script character classes. It consists of 20 basic characters plus 100 others from the compound of basic and vowels characters.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i3.pp1448-1458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Although numerous studies have been conducted on handwritten recognition, there is little and non-optimal research on Javanese script recognition due to its limitation to basic characters. Therefore, this research proposes the design of a handwritten Javanese Script recognition method based on twelve layers deep convolutional neural network (DCNN), consisting of four convolutions, two pooling, and five fully connected (FC) layers, with SoftMax classifiers. Five FC layers were proposed in this research to conduct the learning process in stages to achieve better learning outcomes. Due to the limited number of images in the Javanese script dataset, an augmentation process is needed to improve recognition performance. This method obtained 99.65% accuracy using seven types of geometric augmentation and the proposed DCNN model for 120 Javanese script character classes. It consists of 20 basic characters plus 100 others from the compound of basic and vowels characters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于12层深度卷积神经网络和数据扩充的手写体爪哇文识别方法
尽管已经对手写体识别进行了大量的研究,但由于爪哇文仅限于基本字符,因此对其识别的研究很少,而且不是最优的。因此,本研究提出了一种基于十二层深度卷积神经网络(DCNN)的手写Java脚本识别方法的设计,该网络由四个卷积、两个池和五个完全连接(FC)层组成,并带有SoftMax分类器。本研究提出了五个FC层,以分阶段进行学习过程,从而获得更好的学习结果。由于Java脚本数据集中的图像数量有限,需要进行增强过程来提高识别性能。该方法使用七种类型的几何扩充和所提出的120个Java脚本字符类的DCNN模型获得了99.65%的准确率。它由20个基本字符加上由基本字符和元音字符组成的100个其他字符组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1