Comparing Anti-Inflammatory, Anti-protease Activities and Untargeted Metabolite Profiling Based on Ultra-Performance Liquid Chromatography-Mass Spectroscopy of Five Memecylon species from Western Ghats Karnataka, India
{"title":"Comparing Anti-Inflammatory, Anti-protease Activities and Untargeted Metabolite Profiling Based on Ultra-Performance Liquid Chromatography-Mass Spectroscopy of Five Memecylon species from Western Ghats Karnataka, India","authors":"Bharathi T R","doi":"10.21786/bbrc/15.1.18","DOIUrl":null,"url":null,"abstract":"Memecylon umbellatum, M. edule, M. talbotianum, M. malabaricum, and M. wightii species belong to the family Melastomataceae. The genus is well-known traditional medicinal herb used to treat skin diseases. The goal is to compare the metabolite makeup of the five Memecylon spp. and to evaluate the extract's anti-inflammatory and antiprotease activities. UPLC-ESI-QTOF-MS was used to profile untargeted metabolites in a water/methanol extract, followed by statistical analysis with PCA and HCA. Anti-inflammatory and antiprotease activity were determined by inhibiting soybean 15-lipoxygenase and Protease. Phenols and flavonoids are the most abundant secondary metabolites in Memecylon spp. Principal component analysis (PCA) was used to identify marker chemicals from five species, tocopherol, isorhamnetin 3-glucoside, isothalic acid, stearoylglycerol, and pyrrolidine. The Memecylon spp. maybe clustered into two groups based on principal component analysis, with M. malabaricum & M. wightii clustered together and M. umbellatum, M. edule & M. talbotianum forming another clustered. The anti-inflammatory (Soybean 15-lipoxygenase inhibition) and antiprotease activities (Trypsin and thrombin Inhibition) of crude extracts suggested that M. malabaricum and M. talbotianum extracts exhibited higher inhibition compared to the other three species. These data suggest that differences in metabolite profiles might be connected to differences in the bioactivity of the five plant extracts examined. The untargeted UPLC-ESI-QTOF-MS technique is efficient for identifying bioactive components of Memecylon spp.","PeriodicalId":9156,"journal":{"name":"Bioscience Biotechnology Research Communications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Biotechnology Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21786/bbrc/15.1.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Memecylon umbellatum, M. edule, M. talbotianum, M. malabaricum, and M. wightii species belong to the family Melastomataceae. The genus is well-known traditional medicinal herb used to treat skin diseases. The goal is to compare the metabolite makeup of the five Memecylon spp. and to evaluate the extract's anti-inflammatory and antiprotease activities. UPLC-ESI-QTOF-MS was used to profile untargeted metabolites in a water/methanol extract, followed by statistical analysis with PCA and HCA. Anti-inflammatory and antiprotease activity were determined by inhibiting soybean 15-lipoxygenase and Protease. Phenols and flavonoids are the most abundant secondary metabolites in Memecylon spp. Principal component analysis (PCA) was used to identify marker chemicals from five species, tocopherol, isorhamnetin 3-glucoside, isothalic acid, stearoylglycerol, and pyrrolidine. The Memecylon spp. maybe clustered into two groups based on principal component analysis, with M. malabaricum & M. wightii clustered together and M. umbellatum, M. edule & M. talbotianum forming another clustered. The anti-inflammatory (Soybean 15-lipoxygenase inhibition) and antiprotease activities (Trypsin and thrombin Inhibition) of crude extracts suggested that M. malabaricum and M. talbotianum extracts exhibited higher inhibition compared to the other three species. These data suggest that differences in metabolite profiles might be connected to differences in the bioactivity of the five plant extracts examined. The untargeted UPLC-ESI-QTOF-MS technique is efficient for identifying bioactive components of Memecylon spp.