∝-Ferrite Suppression during Fiber Laser Welding of Al-Si Coated 22MnB5 Press-Hardened Steel

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Welding Journal Pub Date : 2021-06-01 DOI:10.29391/2021.100.018
Muhammad Shehryar Khan, E. Biro, Yixiang Zhou, A. Macwan
{"title":"∝-Ferrite Suppression during Fiber Laser Welding of Al-Si Coated 22MnB5 Press-Hardened Steel","authors":"Muhammad Shehryar Khan, E. Biro, Yixiang Zhou, A. Macwan","doi":"10.29391/2021.100.018","DOIUrl":null,"url":null,"abstract":"During laser welding of an Al-Si coated 22MnB5 steel to produce tailor-welded blanks, the Al-Si coating mixes into the weld and causes the formation of the lower strength ferrite phase dispersed in an otherwise martensitic matrix. It has been shown that the presence of the ferrite phase is the principal reason for premature failure of hot-stamped laser-welded joints. Currently, the Al-Si coating is removed prior to welding, which can be time consuming. This work showed that adding Ni to the fusion zone of laser welded Al-Si coated 22MnB5 steel by welding through a pure Ni coating of a specified thickness, ferrite formation can be suppressed, whereby improving the weld strength and successfully shifting failure from the fusion zone, where it normally occurs, to the base material to achieve 100%joint strength. This work also showed that laser welding Al-Si coated 22MnB5 steel through a Ni coating eliminated the need to mechanically or chemically remove the Al-Si coating prior to welding.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2021.100.018","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 12

Abstract

During laser welding of an Al-Si coated 22MnB5 steel to produce tailor-welded blanks, the Al-Si coating mixes into the weld and causes the formation of the lower strength ferrite phase dispersed in an otherwise martensitic matrix. It has been shown that the presence of the ferrite phase is the principal reason for premature failure of hot-stamped laser-welded joints. Currently, the Al-Si coating is removed prior to welding, which can be time consuming. This work showed that adding Ni to the fusion zone of laser welded Al-Si coated 22MnB5 steel by welding through a pure Ni coating of a specified thickness, ferrite formation can be suppressed, whereby improving the weld strength and successfully shifting failure from the fusion zone, where it normally occurs, to the base material to achieve 100%joint strength. This work also showed that laser welding Al-Si coated 22MnB5 steel through a Ni coating eliminated the need to mechanically or chemically remove the Al-Si coating prior to welding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铝硅涂层22MnB5压淬钢纤维激光焊接过程中铁素体的抑制
在激光焊接Al-Si涂层的22MnB5钢以生产定制焊接坯件的过程中,Al-Si涂层混合到焊缝中,并导致形成分散在马氏体基体中的低强度铁氧体相。研究表明,铁素体相的存在是热冲压激光焊接接头过早失效的主要原因。目前,Al-Si涂层在焊接之前被去除,这可能是耗时的。这项工作表明,通过特定厚度的纯Ni涂层进行焊接,在激光焊接的Al-Si涂层22MnB5钢的熔合区中添加Ni,可以抑制铁素体的形成,从而提高焊接强度,并成功地将故障从通常发生的熔合区转移到母材上,以实现100%的接头强度。这项工作还表明,通过Ni涂层激光焊接Al-Si涂层的22MnB5钢消除了在焊接前机械或化学去除Al-Si镀层的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
期刊最新文献
SiO2-bearing Fluxes Induced Evolution of γ Columnar Grain Size Prediction of Ultrasonic Welding Parameters for Polymer Joining Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 1 — Microstructure A State-of-the-Art Review on Direct Welding of Polymer to Metal for Structural Applications: Part 1 — Promising Processes Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 2 — Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1