FLAT LIKELIHOODS: THE SKEW NORMAL DISTRIBUTION CASE

J. Montoya, Gudelia Figueroa-Preciado
{"title":"FLAT LIKELIHOODS: THE SKEW NORMAL DISTRIBUTION CASE","authors":"J. Montoya, Gudelia Figueroa-Preciado","doi":"10.15446/rev.fac.cienc.v11n2.99967","DOIUrl":null,"url":null,"abstract":"Several references argue in favor of alternative estimation methods, rather than the likelihood one, when the likelihood function exhibits flat regions. However, in the case of the skew normal distribution we present a discussion describing the interpretation of those flat likelihoods. This distribution is widely used in several interesting applications and contains the normal distribution as a nested model and the half-normal as an embedded model. Here, we show that flat likelihoods provide relevant information that should be carefully analyzed before discarding its use and proposing other estimation methods. Two well-known examples, that have been reported as troublesome, are analyzed here, including also an exhaustive computational study. The analysis of different scenarios allows to understand not only the reason of this likelihood function shape, but also to discover the information this behavior provides.\n ","PeriodicalId":31950,"journal":{"name":"Revista de la Facultad de Ciencias","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Facultad de Ciencias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rev.fac.cienc.v11n2.99967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Several references argue in favor of alternative estimation methods, rather than the likelihood one, when the likelihood function exhibits flat regions. However, in the case of the skew normal distribution we present a discussion describing the interpretation of those flat likelihoods. This distribution is widely used in several interesting applications and contains the normal distribution as a nested model and the half-normal as an embedded model. Here, we show that flat likelihoods provide relevant information that should be carefully analyzed before discarding its use and proposing other estimation methods. Two well-known examples, that have been reported as troublesome, are analyzed here, including also an exhaustive computational study. The analysis of different scenarios allows to understand not only the reason of this likelihood function shape, but also to discover the information this behavior provides.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平坦似然:偏正态分布情况
当似然函数显示平坦区域时,一些参考文献支持替代估计方法,而不是似然方法。然而,在偏正态分布的情况下,我们提出了描述这些平坦可能性的解释的讨论。这种分布被广泛应用于几个有趣的应用程序中,它包含正态分布作为嵌套模型和半正态分布作为嵌入模型。在这里,我们表明平坦似然提供了相关信息,在放弃使用它并提出其他估计方法之前,应该仔细分析这些信息。这里分析了两个众所周知的、被认为很麻烦的例子,并进行了详尽的计算研究。通过对不同场景的分析,不仅可以理解这种似然函数形状的原因,还可以发现这种行为提供的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
6
审稿时长
10 weeks
期刊最新文献
ANÁLISIS DEL DESEMPEÑO MECÁNICO DE MINERALES DE USO INDUSTRIAL EN ZONAS COMUNITARIAS MINERAS DEL MUNICIPIO DE VALLEDUPAR OPTO-ELECTRONICS AND NONLINEAR OPTICAL PROPERTIES OF ISOINDOLINE-1,3-DIONE-FULLERENE20-ISOINDOLINE-1,3-DIONE USING DENSITY FUNCTIONAL THEORY INFLUENCIA DE LA FERTILIZACIÓN NITROGENADA Y POTÁSICA EN LA NUEVA VARIEDAD DE TABACO CONNECTICUT 2018 COAPLICACIÓN ENTRE EL CONSORCIO MICROORGANISMOS EFICIENTES Y BIOBRAS-16® AUMENTAN EL CRECIMIENTO Y LA PRODUCTIVIDAD DEL FRIJOL COMÚN AGRONOMIC RESPONSE OF Phaseolus vulgaris CULTIVARS IN AGROCLIMATIC CONDITIONS OF “SAN JUAN AND MARTÍNEZ”, CUBA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1