Efficacy of Pseudomonas sp. and Bacillus sp. in textile dye degradation: A combined study on molecular identification, growth optimization, and comparative degradation

IF 6.6 Q1 ENGINEERING, ENVIRONMENTAL Journal of hazardous materials letters Pub Date : 2022-11-01 DOI:10.1016/j.hazl.2022.100068
Sultana Afrin Jahan Rima , Gobindo Kumar Paul , Shirmin Islam , Md. Akhtar-E-Ekram , Shahriar Zaman , Md. Abu Saleh , Md. Salah Uddin
{"title":"Efficacy of Pseudomonas sp. and Bacillus sp. in textile dye degradation: A combined study on molecular identification, growth optimization, and comparative degradation","authors":"Sultana Afrin Jahan Rima ,&nbsp;Gobindo Kumar Paul ,&nbsp;Shirmin Islam ,&nbsp;Md. Akhtar-E-Ekram ,&nbsp;Shahriar Zaman ,&nbsp;Md. Abu Saleh ,&nbsp;Md. Salah Uddin","doi":"10.1016/j.hazl.2022.100068","DOIUrl":null,"url":null,"abstract":"<div><p>One of the greatest environmental concerns in the world is thought to be the effluents from the textile industry. The use of synthetic dyes in textiles makes the traditional method of treating textile effluents more difficult. Microorganisms can be used to remediate the damage that textile dyes do to the environment. In this investigation, two bacterial strains with the capacity of degrading dye were isolated from textile waste and identified as <em>Pseudomonas</em> sp. (Accession no. NR 117,678.1) and <em>Bacillus</em> sp. (Accession no: NR148248.1) through morphological, biochemical, and molecular test. The cytotoxicity of this wastewater on <em>Artemia salina</em> and phytotoxicity on <em>Triticum aestivum</em> were also investigated using brine shrimp lethality assay and plant growth analysis, respectively. Wheat seed germination was adversely affected by wastewater containing dyes, but subsequently germination was enhanced when the wastewater was treated by the isolated strains. <em>Pseudomonas</em> sp. degraded pink and green dyes more effectively than <em>Bacillus</em> sp., according to results of a comparison of the two bacteria's dye-degrading capacities using the spectrophotometric method. The dye degrading capacity of the bacteria was validated by the HPLC analysis. Therefore, both <em>Pseudomonas</em> species and <em>Bacillus</em> species could be used as efficient bacteria in the large-scale treatment of textile effluents.</p></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"3 ","pages":"Article 100068"},"PeriodicalIF":6.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666911022000211/pdfft?md5=0e61940b10db0173dbeb04bdc9aa649f&pid=1-s2.0-S2666911022000211-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911022000211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 5

Abstract

One of the greatest environmental concerns in the world is thought to be the effluents from the textile industry. The use of synthetic dyes in textiles makes the traditional method of treating textile effluents more difficult. Microorganisms can be used to remediate the damage that textile dyes do to the environment. In this investigation, two bacterial strains with the capacity of degrading dye were isolated from textile waste and identified as Pseudomonas sp. (Accession no. NR 117,678.1) and Bacillus sp. (Accession no: NR148248.1) through morphological, biochemical, and molecular test. The cytotoxicity of this wastewater on Artemia salina and phytotoxicity on Triticum aestivum were also investigated using brine shrimp lethality assay and plant growth analysis, respectively. Wheat seed germination was adversely affected by wastewater containing dyes, but subsequently germination was enhanced when the wastewater was treated by the isolated strains. Pseudomonas sp. degraded pink and green dyes more effectively than Bacillus sp., according to results of a comparison of the two bacteria's dye-degrading capacities using the spectrophotometric method. The dye degrading capacity of the bacteria was validated by the HPLC analysis. Therefore, both Pseudomonas species and Bacillus species could be used as efficient bacteria in the large-scale treatment of textile effluents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
假单胞菌和芽孢杆菌降解纺织染料的效果:分子鉴定、生长优化和比较降解的综合研究
世界上最大的环境问题之一被认为是纺织工业的废水。纺织品中合成染料的使用使传统的纺织品废水处理方法变得更加困难。微生物可用于修复纺织染料对环境造成的损害。从纺织废料中分离到两株具有降解染料能力的细菌,经鉴定为假单胞菌。NR 117,678.1)和芽孢杆菌sp. (Accession no: NR148248.1)通过形态学、生化和分子检测。采用盐水对虾致死试验和植物生长试验,研究了该废水对青蒿的细胞毒性和对小麦的植物毒性。含染料废水对小麦种子萌发有不利影响,但经分离菌株处理后,萌发率有所提高。假单胞菌比芽孢杆菌更有效地降解粉红色和绿色染料,根据使用分光光度法比较两种细菌染料降解能力的结果。通过高效液相色谱分析验证了细菌对染料的降解能力。因此,假单胞菌和芽孢杆菌都可以作为纺织废水大规模处理的有效菌种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of hazardous materials letters
Journal of hazardous materials letters Pollution, Health, Toxicology and Mutagenesis, Environmental Chemistry, Waste Management and Disposal, Environmental Engineering
CiteScore
10.30
自引率
0.00%
发文量
0
审稿时长
20 days
期刊最新文献
Parental BPA exposure disrupts offspring transcriptomic profiles and impairs embryonic lineage specification during zygotic genome activation Toxicological assessment & risk evaluation of pesticides and their mixtures through C. elegans & RISK21: A risk-based approach for sustainable agriculture Visualization and spatial mapping of PFAS in the edible storage root of radish Elevated concentrations of quaternary ammonium compounds in childcare centers: A pilot study No traces of emerging and priority organic pollutants in the muscles of Procambarus clarkii suggest the feasibility of its regulated and sustainable control from uncontaminated environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1