Comparative study of machine learning techniques for breast cancer identification/diagnosis

Q3 Business, Management and Accounting International Journal of Enterprise Network Management Pub Date : 2019-03-05 DOI:10.1504/IJENM.2019.10019586
G. Ganapathy, N. Sivakumaran, M. Punniyamoorthy, R. Surendheran, Srijan Thokala
{"title":"Comparative study of machine learning techniques for breast cancer identification/diagnosis","authors":"G. Ganapathy, N. Sivakumaran, M. Punniyamoorthy, R. Surendheran, Srijan Thokala","doi":"10.1504/IJENM.2019.10019586","DOIUrl":null,"url":null,"abstract":"The number of new cases of female breast cancer was 124.9 per 100,000 women per year. Similarly, deaths were 21.2 per 100,000 women per year. It calls for an urge to increase the awareness of breast cancer and very accurately analyse the causes which may differ in minute variations. This is why the application of computation techniques are widely increasing to support the diagnostic results. In this paper, we present the application of several machine learning techniques and models like neural network, SVM is used to quantify the classifications. The techniques that are most reliable, accurate and robust are emphasised. It gives a plethora of explorations into the research field for developing predictive models. To achieve higher reliability on the data, we present the comparison of various Machine Learning techniques on a dataset that is available on the website Kaggle.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJENM.2019.10019586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 2

Abstract

The number of new cases of female breast cancer was 124.9 per 100,000 women per year. Similarly, deaths were 21.2 per 100,000 women per year. It calls for an urge to increase the awareness of breast cancer and very accurately analyse the causes which may differ in minute variations. This is why the application of computation techniques are widely increasing to support the diagnostic results. In this paper, we present the application of several machine learning techniques and models like neural network, SVM is used to quantify the classifications. The techniques that are most reliable, accurate and robust are emphasised. It gives a plethora of explorations into the research field for developing predictive models. To achieve higher reliability on the data, we present the comparison of various Machine Learning techniques on a dataset that is available on the website Kaggle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习技术在癌症识别/诊断中的比较研究
癌症女性新增病例数为每年每10万名妇女124.9例。同样,每年每100000名妇女中有21.2人死亡。它呼吁提高人们对癌症的认识,并非常准确地分析可能在细微变化中不同的原因。这就是为什么计算技术的应用正在广泛增加以支持诊断结果的原因。在本文中,我们介绍了几种机器学习技术和模型的应用,如神经网络,SVM用于量化分类。强调了最可靠、最准确、最稳健的技术。它对开发预测模型的研究领域进行了大量探索。为了获得更高的数据可靠性,我们在Kaggle网站上提供的数据集上对各种机器学习技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
期刊最新文献
Multi-tier firm-level analysis of global auto supply chain: centrality and financial performance Development of coating material for low carbon steels using MCDM Multi-objective optimisation of wear process parameters of 413/fly ash composites using grey relational analysis Fashion market segmentation using Facebook: an empirical approach Development of coating material for low carbon steels using MCDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1