Face Recognition Based on Local Derivative Tetra Pattern

G. A., Mohamed Sathik M, J. Y
{"title":"Face Recognition Based on Local Derivative Tetra Pattern","authors":"G. A., Mohamed Sathik M, J. Y","doi":"10.21917/IJIVP.2017.0202","DOIUrl":null,"url":null,"abstract":"This paper proposes a new face recognition algorithm called local derivative tetra pattern (LDTrP). The new technique LDTrP is used to alleviate the face recognition rate under real-time challenges. Local derivative pattern (LDP) is a directional feature extraction method to encode directional pattern features based on local derivative variations. The nth -order LDP is proposed to encode the first (n-1)th order local derivative direction variations. The LDP templates extract high-order local information by encoding various distinctive spatial relationships contained in a given local region. The local tetra pattern (LTrP) encodes the relationship between the reference pixel and its neighbours by using the first-order derivatives in vertical and horizontal directions. LTrP extracts values which are based on the distribution of edges which are coded using four directions. The LDTrP combines the higher order directional feature from both LDP and LTrP. Experimental results on ORL and JAFFE database show that the performance of LDTrP is consistently better than LBP, LTP and LDP for face identification under various conditions. The performance of the proposed method is measured in terms of recognition rate.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":"07 1","pages":"1393-1400"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/IJIVP.2017.0202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a new face recognition algorithm called local derivative tetra pattern (LDTrP). The new technique LDTrP is used to alleviate the face recognition rate under real-time challenges. Local derivative pattern (LDP) is a directional feature extraction method to encode directional pattern features based on local derivative variations. The nth -order LDP is proposed to encode the first (n-1)th order local derivative direction variations. The LDP templates extract high-order local information by encoding various distinctive spatial relationships contained in a given local region. The local tetra pattern (LTrP) encodes the relationship between the reference pixel and its neighbours by using the first-order derivatives in vertical and horizontal directions. LTrP extracts values which are based on the distribution of edges which are coded using four directions. The LDTrP combines the higher order directional feature from both LDP and LTrP. Experimental results on ORL and JAFFE database show that the performance of LDTrP is consistently better than LBP, LTP and LDP for face identification under various conditions. The performance of the proposed method is measured in terms of recognition rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部导数Tetra模式的人脸识别
提出了一种新的人脸识别算法——局部导数四元模式(LDTrP)。利用LDTrP技术缓解了人脸识别率在实时性方面的挑战。局部导数模式(LDP)是一种基于局部导数变化对方向模式特征进行编码的方向特征提取方法。提出了n阶LDP编码第一个(n-1)阶局部导数方向变化。LDP模板通过对给定局部区域中包含的各种不同的空间关系进行编码来提取高阶局部信息。局部四元模式(ltp)通过在垂直和水平方向上使用一阶导数来编码参考像素与其相邻像素之间的关系。ltp提取基于边缘分布的值,这些边缘分布使用四个方向编码。LDTrP结合了LDP和ltp的高阶定向特性。在ORL和JAFFE数据库上的实验结果表明,在各种条件下,LDTrP的人脸识别性能始终优于LBP、LTP和LDP。该方法的性能以识别率来衡量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
DIMENSIONALITY REDUCTION BASED CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS DATASET GENERATION ADVANCED COLOR COVERT IMAGE SHARING USING ARNOLD CAT MAP AND VISUAL CRYPTOGRAPHY STREETLIGHT OBJECTS RECOGNITION BY REGION AND HISTOGRAM FEATURES IN AN AUTONOMOUS VEHICLE SYSTEM SMART GESTURE USING REAL TIME OBJECT TRACKING CLASSIFICATION OF BRAIN TUMOR USING BEES SWARM OPTIMISATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1