S. Cooke, D. Galassi, B. Gillanders, S. J. Landsman, N. Hammerschlag, A. Gallagher, E. Eliason, C. Kraft, Mark K. Taylor, C. Crisafulli, D. Shugar, R. Lennox
{"title":"Consequences of “Natural” Disasters on Aquatic Life and Habitats","authors":"S. Cooke, D. Galassi, B. Gillanders, S. J. Landsman, N. Hammerschlag, A. Gallagher, E. Eliason, C. Kraft, Mark K. Taylor, C. Crisafulli, D. Shugar, R. Lennox","doi":"10.1139/er-2022-0050","DOIUrl":null,"url":null,"abstract":"“Natural” disasters (also known as geophysical disasters) involve physical processes that have a direct or indirect impact on humans. These events occur rapidly and may have severe consequences for resident flora and fauna as their habitat undergoes dramatic and sudden change. Although most studies have focused on the impact of natural disasters on humans and terrestrial systems, geophysical disasters can also impact aquatic ecosystems. Here we provide a synthesis on the effects of the most common and destructive geophysical disasters on aquatic systems (life and habitat). Our approach spanned realms (i.e., freshwater, estuarine, marine) and taxa (i.e., plants, vertebrates, invertebrates, microbes) and included floods, droughts, wildfires, hurricanes/cyclones/typhoons, tornadoes, dust storms, ice storms, avalanches (snow), landslides, volcanic eruptions, earthquakes (including limnic eruptions), tsunamis, and cosmic events. Many geophysical disasters have dramatic effects on aquatic systems. The evidence base is somewhat limited for some natural disasters because transient events (e.g., tornadoes, floods) are difficult to study. Most natural disaster studies focus on geology/geomorphology and hazard assessment for humans and infrastructure. However, the destruction of aquatic systems can impact humans indirectly through loss of food security, cultural services or livelihoods. Many geophysical disasters interact in complex ways (e.g., wildfires often lead to landslides and flooding) and can be magnified or otherwise mediated by human activities. Our synthesis reveals that geophysical events influence aquatic ecosystems, often in negative ways, yet systems can be resilient provided that effects are not compounded by anthropogenic stressors. It is difficult to predict or prevent geophysical disasters but understanding how aquatic ecosystems are influenced by geophysical events is important given the inherent connection between peoples and aquatic ecosystems.","PeriodicalId":50514,"journal":{"name":"Environmental Reviews","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Reviews","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1139/er-2022-0050","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
“Natural” disasters (also known as geophysical disasters) involve physical processes that have a direct or indirect impact on humans. These events occur rapidly and may have severe consequences for resident flora and fauna as their habitat undergoes dramatic and sudden change. Although most studies have focused on the impact of natural disasters on humans and terrestrial systems, geophysical disasters can also impact aquatic ecosystems. Here we provide a synthesis on the effects of the most common and destructive geophysical disasters on aquatic systems (life and habitat). Our approach spanned realms (i.e., freshwater, estuarine, marine) and taxa (i.e., plants, vertebrates, invertebrates, microbes) and included floods, droughts, wildfires, hurricanes/cyclones/typhoons, tornadoes, dust storms, ice storms, avalanches (snow), landslides, volcanic eruptions, earthquakes (including limnic eruptions), tsunamis, and cosmic events. Many geophysical disasters have dramatic effects on aquatic systems. The evidence base is somewhat limited for some natural disasters because transient events (e.g., tornadoes, floods) are difficult to study. Most natural disaster studies focus on geology/geomorphology and hazard assessment for humans and infrastructure. However, the destruction of aquatic systems can impact humans indirectly through loss of food security, cultural services or livelihoods. Many geophysical disasters interact in complex ways (e.g., wildfires often lead to landslides and flooding) and can be magnified or otherwise mediated by human activities. Our synthesis reveals that geophysical events influence aquatic ecosystems, often in negative ways, yet systems can be resilient provided that effects are not compounded by anthropogenic stressors. It is difficult to predict or prevent geophysical disasters but understanding how aquatic ecosystems are influenced by geophysical events is important given the inherent connection between peoples and aquatic ecosystems.
期刊介绍:
Published since 1993, Environmental Reviews is a quarterly journal that presents authoritative literature reviews on a wide range of environmental science and associated environmental studies topics, with emphasis on the effects on and response of both natural and manmade ecosystems to anthropogenic stress. The authorship and scope are international, with critical literature reviews submitted and invited on such topics as sustainability, water supply management, climate change, harvesting impacts, acid rain, pesticide use, lake acidification, air and marine pollution, oil and gas development, biological control, food chain biomagnification, rehabilitation of polluted aquatic systems, erosion, forestry, bio-indicators of environmental stress, conservation of biodiversity, and many other environmental issues.