{"title":"Difficulty Scaling in Proof of Work for Decentralized Problem Solving","authors":"P. Philippopoulos, A. Ricottone, Carlos G. Oliver","doi":"10.5195/ledger.2020.194","DOIUrl":null,"url":null,"abstract":"We propose DIPS (Difficulty-based Incentives for Problem Solving), a simple modification of the Bitcoin proof-of-work algorithm that rewards blockchain miners for solving optimization problems of scientific interest. The result is a blockchain which redirects some of the computational resources invested in hash-based mining towards scientific computation, effectively reducing the amount of energy ‘wasted’ on mining. DIPS builds the solving incentive directly in the proof-of-work by providing a reduction in block hashing difficulty when optimization improvements are found. A key advantage of this scheme is that decentralization is not greatly compromised while maintaining a simple blockchain design. We study two incentivization schemes and provide simulation results showing that DIPS is able to reduce the amount of hash-power used in the network while generating solutions to optimization problems.","PeriodicalId":36240,"journal":{"name":"Ledger","volume":"5 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ledger","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5195/ledger.2020.194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 4
Abstract
We propose DIPS (Difficulty-based Incentives for Problem Solving), a simple modification of the Bitcoin proof-of-work algorithm that rewards blockchain miners for solving optimization problems of scientific interest. The result is a blockchain which redirects some of the computational resources invested in hash-based mining towards scientific computation, effectively reducing the amount of energy ‘wasted’ on mining. DIPS builds the solving incentive directly in the proof-of-work by providing a reduction in block hashing difficulty when optimization improvements are found. A key advantage of this scheme is that decentralization is not greatly compromised while maintaining a simple blockchain design. We study two incentivization schemes and provide simulation results showing that DIPS is able to reduce the amount of hash-power used in the network while generating solutions to optimization problems.