Biodegradation behaviors of magnesium(Mg)-based alloy nails in autologous bone grafts: In vivo study in rabbit skulls

Yuta Yanagisawa, Y. Shimizu, T. Mukai, Yuya Sano, Kenji Odashima, N. Ikeo, H. Saito, K. Yamauchi, Tetsu Takahashi, H. Kumamoto
{"title":"Biodegradation behaviors of magnesium(Mg)-based alloy nails in autologous bone grafts: In vivo study in rabbit skulls","authors":"Yuta Yanagisawa, Y. Shimizu, T. Mukai, Yuya Sano, Kenji Odashima, N. Ikeo, H. Saito, K. Yamauchi, Tetsu Takahashi, H. Kumamoto","doi":"10.1177/22808000221095230","DOIUrl":null,"url":null,"abstract":"Objective: In this study, autologous bone grafts using bone-fixing nails made of magnesium-zinc-calcium ternary alloys were performed using rabbit skulls. Material and methods: Two types of nails for bone fixation were prepared: 2.5 mm width, 3 mm length and 2.5 mm width, 2 mm length. A disk-shaped bone with a diameter of 5 mm was resected from the parietal bone and fixed with a 3 mm long nail. As a control group, a 2 mm long nail was driven into the existing bone. The rabbits were sacrificed at 1, 4, 12, and 24 weeks after surgery. The resected samples were observed with micro X-ray CT, and embedded in methyl methacrylate to prepare non-decalcified specimens. The in vivo localization of elements was examined using energy-dispersive X-ray spectroscopy (EDS). Results: Micro X-ray CT images of samples showed volume reduction due to degradation in both the bone graft and control groups. No significant difference in the amount of degradation between the two groups was observed, however characteristic degradation processes were observed in each group. The samples stained with alizarin red S showed amorphous areas around the nails, which were considered as corrosion products and contacted directly with the newly formed bones. EDS analysis showed that corrosion products were mainly composed of magnesium and oxygen at an early stage, while calcium and phosphorus were detected on the surface layer during the long-term observation. Conclusions: The degradation speed of the magnesium alloy nails varied depending on the shapes of the nails and surrounding tissue conditions. A calcium phosphate layer was formed on the surface of magnesium alloy nails, suggesting that the degradation rate of the nail was slow.","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/22808000221095230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: In this study, autologous bone grafts using bone-fixing nails made of magnesium-zinc-calcium ternary alloys were performed using rabbit skulls. Material and methods: Two types of nails for bone fixation were prepared: 2.5 mm width, 3 mm length and 2.5 mm width, 2 mm length. A disk-shaped bone with a diameter of 5 mm was resected from the parietal bone and fixed with a 3 mm long nail. As a control group, a 2 mm long nail was driven into the existing bone. The rabbits were sacrificed at 1, 4, 12, and 24 weeks after surgery. The resected samples were observed with micro X-ray CT, and embedded in methyl methacrylate to prepare non-decalcified specimens. The in vivo localization of elements was examined using energy-dispersive X-ray spectroscopy (EDS). Results: Micro X-ray CT images of samples showed volume reduction due to degradation in both the bone graft and control groups. No significant difference in the amount of degradation between the two groups was observed, however characteristic degradation processes were observed in each group. The samples stained with alizarin red S showed amorphous areas around the nails, which were considered as corrosion products and contacted directly with the newly formed bones. EDS analysis showed that corrosion products were mainly composed of magnesium and oxygen at an early stage, while calcium and phosphorus were detected on the surface layer during the long-term observation. Conclusions: The degradation speed of the magnesium alloy nails varied depending on the shapes of the nails and surrounding tissue conditions. A calcium phosphate layer was formed on the surface of magnesium alloy nails, suggesting that the degradation rate of the nail was slow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镁基合金钉在兔颅骨内的生物降解行为研究
目的:采用镁锌钙三元合金制骨钉,在兔颅骨上进行自体骨移植。材料和方法:制备了两种用于骨固定的钉:2.5 mm宽,3 mm长和2.5 mm宽,2 mm长。直径为5的圆盘状骨头 mm从顶骨切除并用3 mm长的钉子。作为对照组 将mm长的钉子钉入现有骨中。在1、4、12和24时处死兔子 手术后数周。切除的标本用微型X射线CT观察,并包埋在甲基丙烯酸甲酯中制备非脱钙标本。使用能量色散X射线光谱(EDS)检查元素的体内定位。结果:在骨移植组和对照组中,样品的显微X射线CT图像显示由于降解导致体积减少。两组之间的降解量没有观察到显著差异,但在每组中都观察到了特征性的降解过程。用茜素红S染色的样品在指甲周围显示出无定形区域,这些区域被认为是腐蚀产物,并与新形成的骨骼直接接触。EDS分析表明,早期腐蚀产物主要由镁和氧组成,而在长期观察中,表层检测到钙和磷。结论:镁合金指甲的降解速度随指甲形状和周围组织条件的不同而不同。镁合金指甲表面形成磷酸钙层,表明指甲的降解速度较慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Biomaterials & Biomechanics
Journal of Applied Biomaterials & Biomechanics 生物-材料科学:生物材料
自引率
0.00%
发文量
0
审稿时长
12 months
期刊最新文献
Flow investigation of second grade micropolar nanofluid with porous medium over an exponentially stretching sheet β-TCP/DCPD-PHBV (40%/60%): Biomaterial made from bioceramic and biopolymer for bone regeneration; investigation of intrinsic properties Cetylpyridinium chloride inhibits human breast tumor cells growth in a no-selective way The effects of several operative parameters on the grafting of selected grafting agents on a polyamide six (PA6) fiber surface A Copper nanoparticles-based polymeric spray coating: Nanoshield against Sars-Cov-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1