Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR
Hang Xiao, Zhengfeng Zhang, Yongxiang Zhao, Jun Yang
{"title":"Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR","authors":"Hang Xiao, Zhengfeng Zhang, Yongxiang Zhao, Jun Yang","doi":"10.1007/s10858-021-00367-9","DOIUrl":null,"url":null,"abstract":"<p>Spectral editing is crucial to simplify the crowded solid-state NMR spectra of proteins. New techniques are introduced to edit <sup>13</sup>C-<sup>13</sup>C correlations of uniformly labeled proteins under moderate magic-angle spinning (MAS), based on our recent frequency-selective homonuclear recoupling sequences [Zhang et al., J. Phys. Chem. Lett. 2020, 11, 8077–8083]. The signals of alanine, serine, or threonine residues are selected out by selective <sup>13</sup>Cα-<sup>13</sup>Cβ double-quantum filtering (DQF). The <sup>13</sup>Cα-<sup>13</sup>Cβ correlations of alanine residues are selectively established with efficiency up to?~?1.8 times that by dipolar-assisted rotational resonance (DARR). The techniques are shown in 2D/3D NCCX experiments and applied to the uniformly <sup>13</sup>C, <sup>15</sup>N labeled Aquaporin Z (AqpZ) membrane protein, demonstrating their potential to simplify spectral analyses in biological solid-state NMR.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"75 4-5","pages":"193 - 202"},"PeriodicalIF":1.3000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00367-9","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-021-00367-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Spectral editing is crucial to simplify the crowded solid-state NMR spectra of proteins. New techniques are introduced to edit 13C-13C correlations of uniformly labeled proteins under moderate magic-angle spinning (MAS), based on our recent frequency-selective homonuclear recoupling sequences [Zhang et al., J. Phys. Chem. Lett. 2020, 11, 8077–8083]. The signals of alanine, serine, or threonine residues are selected out by selective 13Cα-13Cβ double-quantum filtering (DQF). The 13Cα-13Cβ correlations of alanine residues are selectively established with efficiency up to?~?1.8 times that by dipolar-assisted rotational resonance (DARR). The techniques are shown in 2D/3D NCCX experiments and applied to the uniformly 13C, 15N labeled Aquaporin Z (AqpZ) membrane protein, demonstrating their potential to simplify spectral analyses in biological solid-state NMR.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.