The estimated PGA map of the Mw6.4 2006 Yogyakarta Indonesia earthquake, constructed from the Modified Mercalli intensity IMM

Widodo Pawirodikromo
{"title":"The estimated PGA map of the Mw6.4 2006 Yogyakarta Indonesia earthquake, constructed from the Modified Mercalli intensity IMM","authors":"Widodo Pawirodikromo","doi":"10.5459/BNZSEE.51.2.92-104","DOIUrl":null,"url":null,"abstract":"Many moderate and strong earthquakes have occurred in Indonesia. However, since ground motion records are unavailable, a concise earthquake peak ground acceleration (PGA) map has never before been constructed. Several efforts have been made to construct PGA maps after the Mw6.4 2006 Yogyakarta earthquake, i.e. earthquake PGA maps by researchers [1–4]. However, due to their use of completely different earthquake sources, methods of analysis and by using exclusion criteria of ground motion prediction equations (GMPE), the maps differed greatly and did not match the actual structural damage found in the field. Estimation of a 2006 Yogyakarta earthquake PGA map became possible after field surveying of the Imm conducted by Wijaya [5]. The estimated PGA map was constructed based on the isoseimic lines, intensity prediction equation (IPE) by Wijaya [5] and peak ground acceleration at YOGI and BJI station control points, as published by Elnashai et al [6]. A set of most recent GMPEs were chosen, as they closely predicted the PGA at two control points. An Extrapolation Method was developed in which the PGA between YOGI and BJI stations would be extrapolated to all data points in the field to yield the 2006 Yogyakarta seismic PGA map. Result of the investigation indicated that the pattern of the new PGA map does not form a circle with radius R, but occurs longitudinally following the direction of the Opak River fault trace and closely follows the pattern of Imm map and damage to buildings in the field. It was found that the maximum upperbound PGA reached ±0.50-0.51g and it did not occur at the epicenter area but instead took place in relatively deep soil deposit approximately ±2 km west of the Opak River fault.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/BNZSEE.51.2.92-104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Many moderate and strong earthquakes have occurred in Indonesia. However, since ground motion records are unavailable, a concise earthquake peak ground acceleration (PGA) map has never before been constructed. Several efforts have been made to construct PGA maps after the Mw6.4 2006 Yogyakarta earthquake, i.e. earthquake PGA maps by researchers [1–4]. However, due to their use of completely different earthquake sources, methods of analysis and by using exclusion criteria of ground motion prediction equations (GMPE), the maps differed greatly and did not match the actual structural damage found in the field. Estimation of a 2006 Yogyakarta earthquake PGA map became possible after field surveying of the Imm conducted by Wijaya [5]. The estimated PGA map was constructed based on the isoseimic lines, intensity prediction equation (IPE) by Wijaya [5] and peak ground acceleration at YOGI and BJI station control points, as published by Elnashai et al [6]. A set of most recent GMPEs were chosen, as they closely predicted the PGA at two control points. An Extrapolation Method was developed in which the PGA between YOGI and BJI stations would be extrapolated to all data points in the field to yield the 2006 Yogyakarta seismic PGA map. Result of the investigation indicated that the pattern of the new PGA map does not form a circle with radius R, but occurs longitudinally following the direction of the Opak River fault trace and closely follows the pattern of Imm map and damage to buildings in the field. It was found that the maximum upperbound PGA reached ±0.50-0.51g and it did not occur at the epicenter area but instead took place in relatively deep soil deposit approximately ±2 km west of the Opak River fault.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2006年印尼日惹Mw6.4地震的估计PGA地图,由修正的Mercalli强度IMM构建
印尼发生了多次中强地震。然而,由于地面运动记录不可用,以前从未构建过简明的地震峰值地面加速度(PGA)图。在2006年日惹6.4级地震后,研究人员已经做出了一些努力来构建PGA地图,即地震PGA地图[1-4]。然而,由于使用了完全不同的震源、分析方法和地震动预测方程的排除标准,这些地图差异很大,与现场发现的实际结构损伤不匹配。在Wijaya对Imm进行实地调查后,对2006年日惹地震PGA地图的估计成为可能[5]。根据Elnashai等人[6]发表的等压线、Wijaya[5]的强度预测方程(IPE)以及YOGI和BJI站控制点的峰值地面加速度,构建了估计的PGA地图。选择了一组最新的GMPE,因为它们在两个控制点上密切预测了PGA。开发了一种外推方法,将YOGI和BJI站之间的PGA外推到现场的所有数据点,以生成2006年日惹地震PGA图。调查结果表明,新的PGA地图的模式没有形成半径为R的圆圈,而是沿着Opak河断层线的方向纵向出现,并密切遵循Imm地图的模式和对现场建筑物的损坏。研究发现,最大上限PGA达到±0.50-0.51g,它没有发生在震中地区,而是发生在Opak河断层以西约±2km的相对较深的土壤沉积物中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
期刊最新文献
Earthquake design loads for retaining walls Infrastructure planning emergency levels of service for the Wellington region, Aotearoa New Zealand – An operationalised framework Seismic fragility of reinforced concrete buildings with hollow-core flooring systems Evaluation of the Inter-frequency Correlation of New Zealand CyberShake Crustal Earthquake Simulations Seismic protection of artefacts with adhesives and base-isolation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1