Empirical Evidence of Reduced Wildfire Ignition Risk in the Presence of Strong Winds

IF 3 3区 农林科学 Q2 ECOLOGY Fire-Switzerland Pub Date : 2023-08-29 DOI:10.3390/fire6090338
Assaf Shmuel, E. Heifetz
{"title":"Empirical Evidence of Reduced Wildfire Ignition Risk in the Presence of Strong Winds","authors":"Assaf Shmuel, E. Heifetz","doi":"10.3390/fire6090338","DOIUrl":null,"url":null,"abstract":"Anyone who has tried lighting a campfire on a windy day can appreciate how difficult it could be. However, despite real-life experience and despite laboratory experiments which have demonstrated that fire ignition risk dramatically decreases beyond a certain wind threshold, current fire weather indices (FWIs) do not take this effect into account and assume a monotonic relation between wind velocity and ignition risk. In this paper, we perform a global analysis which empirically quantifies the probability of ignition as a function of wind velocity. Using both traditional methods (a logistic regression and a generalized additive model) and machine learning techniques, we find that beyond a threshold of approximately 3–4 m/s, the ignition risk substantially decreases. The effect holds when accounting for additional factors such as temperature and relative humidity. We recommend updating FWIs to account for this issue.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire-Switzerland","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fire6090338","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anyone who has tried lighting a campfire on a windy day can appreciate how difficult it could be. However, despite real-life experience and despite laboratory experiments which have demonstrated that fire ignition risk dramatically decreases beyond a certain wind threshold, current fire weather indices (FWIs) do not take this effect into account and assume a monotonic relation between wind velocity and ignition risk. In this paper, we perform a global analysis which empirically quantifies the probability of ignition as a function of wind velocity. Using both traditional methods (a logistic regression and a generalized additive model) and machine learning techniques, we find that beyond a threshold of approximately 3–4 m/s, the ignition risk substantially decreases. The effect holds when accounting for additional factors such as temperature and relative humidity. We recommend updating FWIs to account for this issue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强风情况下降低野火点火风险的经验证据
任何尝试过在大风天点燃营火的人都能体会到这有多难。然而,尽管现实生活经验和实验室实验已经证明,超过一定的风阈值后,火灾着火风险会显著降低,但目前的火灾天气指数(fwi)并没有考虑到这一影响,并假设风速与着火风险之间存在单调关系。在本文中,我们进行了一个全局分析,经验量化了点火概率作为风速的函数。使用传统方法(逻辑回归和广义加性模型)和机器学习技术,我们发现超过大约3-4米/秒的阈值,着火风险大大降低。当考虑到温度和相对湿度等其他因素时,这种效应仍然成立。我们建议更新wi来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fire-Switzerland
Fire-Switzerland Multiple-
CiteScore
3.10
自引率
15.60%
发文量
182
审稿时长
11 weeks
期刊最新文献
Fire Risk of Polyethylene (PE)-Based Foam Blocks Used as Interior Building Materials and Fire Suppression through a Simple Surface Coating: Analysis of Vulnerability, Propagation, and Flame Retardancy Experimental Study on Combustion Behavior of U-Shaped Cables with Different Bending Forms and Angles Evaluation of Air Quality inside Self-Contained Breathing Apparatus Used by Firefighters Summer Compound Drought-Heat Extremes Amplify Fire-Weather Risk and Burned Area beyond Historical Thresholds in Chongqing Region, Subtropical China Identification Methodology for Chemical Warehouses Dealing with Flammable Substances Capable of Causing Firewater Pollution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1