The kinetics of nutritional quality changes during winter jujube slices drying process

IF 4.6 3区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Quality Assurance and Safety of Crops & Foods Pub Date : 2021-02-03 DOI:10.15586/QAS.V13I1.824
Niu Yubao, Wei Shiyu, L. Huan, Yong‐zhen Zang, Cao Yuxue, Zhu Rongguang, Zheng Xia, Yao Xuedong
{"title":"The kinetics of nutritional quality changes during winter jujube slices drying process","authors":"Niu Yubao, Wei Shiyu, L. Huan, Yong‐zhen Zang, Cao Yuxue, Zhu Rongguang, Zheng Xia, Yao Xuedong","doi":"10.15586/QAS.V13I1.824","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to investigate the kinetics of nutrient quality (Vitamin C (Vc), reducing sugar and total acidity) change of winter jujube slices that under different drying temperatures (55, 60, 65 and 70?) and different air velocities (3, 6 and 9m/s) during the air-impingement drying process. Results showed that the content of Vc, reducing sugar and total acidity decreased with increasing drying time. Furthermore, analysis of variances indicated that the drying temperature, air velocity and time had a significant effect on the loss of Vc, reducing sugar and total acidity (p<0.05). Zero order, first order and Weibull models were used to fit the experimental data, Weibull model was considered as the most suitable one to the degradation kinetics of Vc, reducing sugar and total acidity in dried samples at different temperatures and air velocities. According to the Arrhenius formula, the activation energy of Vc, reducing sugar and total acidity degradation kinetics were 63.78 kJ/mol, 36.48 kJ/mol and 153.51 kJ/mol, respectively. This research can provide some references for enhancing dried products quality in the jujube drying industry.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Assurance and Safety of Crops & Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/QAS.V13I1.824","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

The purpose of this research is to investigate the kinetics of nutrient quality (Vitamin C (Vc), reducing sugar and total acidity) change of winter jujube slices that under different drying temperatures (55, 60, 65 and 70?) and different air velocities (3, 6 and 9m/s) during the air-impingement drying process. Results showed that the content of Vc, reducing sugar and total acidity decreased with increasing drying time. Furthermore, analysis of variances indicated that the drying temperature, air velocity and time had a significant effect on the loss of Vc, reducing sugar and total acidity (p<0.05). Zero order, first order and Weibull models were used to fit the experimental data, Weibull model was considered as the most suitable one to the degradation kinetics of Vc, reducing sugar and total acidity in dried samples at different temperatures and air velocities. According to the Arrhenius formula, the activation energy of Vc, reducing sugar and total acidity degradation kinetics were 63.78 kJ/mol, 36.48 kJ/mol and 153.51 kJ/mol, respectively. This research can provide some references for enhancing dried products quality in the jujube drying industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冬枣片干燥过程中营养品质变化动力学研究
研究了不同干燥温度(55℃、60℃、65℃和70℃)和不同风速(3℃、6℃和9m/s)下冬枣干制过程中营养品质(维生素C、还原糖和总酸度)的变化动力学。结果表明,随着干燥时间的延长,Vc含量、还原糖含量和总酸度均呈下降趋势。此外,方差分析表明,干燥温度、风速和时间对Vc、还原糖和总酸度损失有显著影响(p<0.05)。采用零阶、一阶和威布尔模型对实验数据进行拟合,认为威布尔模型最适合不同温度和风速下干燥样品中Vc、还原糖和总酸度的降解动力学。根据Arrhenius公式,Vc、还原糖和总酸度降解动力学活化能分别为63.78 kJ/mol、36.48 kJ/mol和153.51 kJ/mol。本研究可为红枣干燥行业提高干燥产品质量提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
7.50%
发文量
61
审稿时长
1 months
期刊介绍: ''Quality Assurance and Safety of Crops & Foods'' is an international peer-reviewed journal publishing research and review papers associated with the quality and safety of food and food sources including cereals, grains, oilseeds, fruits, root crops and animal sources. It targets both primary materials and their conversion to human foods. There is a strong focus on the development and application of new analytical tools and their potential for quality assessment, assurance, control and safety. The scope includes issues of risk assessment, traceability, authenticity, food security and socio-economic impacts. Manuscripts presenting novel data and information that are likely to significantly contribute to scientific knowledge in areas of food quality and safety will be considered. ''Quality Assurance and Safety of Crops & Foods'' provides a forum for all those working in the specialist field of food quality and safety to report on the progress and outcomes of their research.
期刊最新文献
Antimicrobial mechanism and biocontrol effect of Bacillus cereus XZ30-2 on Aspergillus niger Extraction, isolation, identification, and bioactivity of polysaccharides from Antrodia cinnamomea Exploring the efficacy of Shexiang Tongxin extract pills in severe heart failure Investigation of meat species adulteration in beef-based meat products via real-time PCR in Türkiye Prevalence of anterior nares colonization of Palestinian diabetic patients with Staphylococcus aureus or methicillin-resistant Staphylococcus aureus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1