Nanocarrier from water extract solution of Auricularia auricula for zinc delivery

IF 4.6 Q1 CHEMISTRY, APPLIED Food Hydrocolloids for Health Pub Date : 2022-12-01 DOI:10.1016/j.fhfh.2022.100070
Xiaoting Yu , Yannan Chen , Shanghua Xing , Deyang Yu , Mingqian Tan
{"title":"Nanocarrier from water extract solution of Auricularia auricula for zinc delivery","authors":"Xiaoting Yu ,&nbsp;Yannan Chen ,&nbsp;Shanghua Xing ,&nbsp;Deyang Yu ,&nbsp;Mingqian Tan","doi":"10.1016/j.fhfh.2022.100070","DOIUrl":null,"url":null,"abstract":"<div><p>Food-borne nanoparticles (FNs) may have potential for microelement delivery due to their good biocompatibility and healthy benefits. In this paper, hydrophilic FNs with ultra-small size of 1.7 nm were prepared from the water extract solution of <em>Auricularia auricula</em> by hydrothermal method. The structural characterization showed that Zn(II)-FNs were formed after the interaction of abundant functional groups like amino, hydroxyl, and carboxyl functional groups on the surface of FNs with Zn<sup>2+</sup>. The Zn(II)-FNs showed better cell compatibility than ZnSO<sub>4</sub> and zinc gluconate with no visible cytotoxicity at concentrations up to 75 μg/mL for the normal rat kidney cells. Less than 5% hemolysis rate was found when the concentration of Zn(II)-FNs was 5 mg/mL after incubation for 3h. The biodistribution experiments indicated that Zn(II)-FNs had no obvious toxic effect after being orally administrated at a dose of 500 mg/kg mouse body weight, and Zn(II)-FNs were present in the stomach, intestine, lung, liver, and kidney. Our data indicated that FNs collected from <em>Auricularia auricula</em> water extract solution might act as a safe and effective nanocarrier for Zn(II).</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025922000176/pdfft?md5=8891813c9a852a4b02f4e9590f3f67c2&pid=1-s2.0-S2667025922000176-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids for Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667025922000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Food-borne nanoparticles (FNs) may have potential for microelement delivery due to their good biocompatibility and healthy benefits. In this paper, hydrophilic FNs with ultra-small size of 1.7 nm were prepared from the water extract solution of Auricularia auricula by hydrothermal method. The structural characterization showed that Zn(II)-FNs were formed after the interaction of abundant functional groups like amino, hydroxyl, and carboxyl functional groups on the surface of FNs with Zn2+. The Zn(II)-FNs showed better cell compatibility than ZnSO4 and zinc gluconate with no visible cytotoxicity at concentrations up to 75 μg/mL for the normal rat kidney cells. Less than 5% hemolysis rate was found when the concentration of Zn(II)-FNs was 5 mg/mL after incubation for 3h. The biodistribution experiments indicated that Zn(II)-FNs had no obvious toxic effect after being orally administrated at a dose of 500 mg/kg mouse body weight, and Zn(II)-FNs were present in the stomach, intestine, lung, liver, and kidney. Our data indicated that FNs collected from Auricularia auricula water extract solution might act as a safe and effective nanocarrier for Zn(II).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黑木耳水提液制备纳米锌载体
由于其良好的生物相容性和健康益处,食源性纳米颗粒(FNs)可能具有微量元素递送的潜力。本文以黑木耳水提液为原料,采用水热法制备了尺寸为1.7 nm的超小亲水性纳米颗粒。结构表征表明,Zn(II)-FNs是由FNs表面丰富的氨基、羟基、羧基官能团与Zn2+相互作用形成的。在75 μg/mL浓度下,Zn(II)-FNs对正常大鼠肾细胞的细胞相容性优于ZnSO4和葡萄糖酸锌,且无明显细胞毒性。孵育3h后,当Zn(II)-FNs浓度为5 mg/mL时,溶血率小于5%。生物分布实验表明,以500 mg/kg小鼠体重给药后,Zn(II)-FNs无明显毒性作用,且在胃、肠、肺、肝、肾中均存在Zn(II)-FNs。结果表明,木耳水提液中提取的FNs可作为锌(II)安全有效的纳米载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
61 days
期刊最新文献
Green synthesis of silver nanoparticles from mulberry leaf through hot melt extrusion: Enhanced antioxidant, antibacterial, anti-inflammatory, antidiabetic, and anticancer properties Silkworm pupae protein-based film incorporated with Catharanthus roseus leaf extract-based nanoparticles enhanced the lipid stability and microbial quality of cheddar cheese Re-processing of pharmaceutical herb residues using isolated probiotics from plant sources and their beneficial effects on diarrhea Investigating next-generation edible packaging: Protein-based films and coatings for delivering active compounds Recent advances on antimicrobial peptide and polysaccharide hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1