Commercial lunar propellant architecture: A collaborative study of lunar propellant production

Q1 Physics and Astronomy REACH Pub Date : 2019-03-01 DOI:10.1016/j.reach.2019.100026
David Kornuta , Angel Abbud-Madrid , Jared Atkinson , Jonathan Barr , Gary Barnhard , Dallas Bienhoff , Brad Blair , Vanessa Clark , Justin Cyrus , Blair DeWitt , Chris Dreyer , Barry Finger , Jonathan Goff , Koki Ho , Laura Kelsey , Jim Keravala , Bernard Kutter , Philip Metzger , Laura Montgomery , Phillip Morrison , Guangdong Zhu
{"title":"Commercial lunar propellant architecture: A collaborative study of lunar propellant production","authors":"David Kornuta ,&nbsp;Angel Abbud-Madrid ,&nbsp;Jared Atkinson ,&nbsp;Jonathan Barr ,&nbsp;Gary Barnhard ,&nbsp;Dallas Bienhoff ,&nbsp;Brad Blair ,&nbsp;Vanessa Clark ,&nbsp;Justin Cyrus ,&nbsp;Blair DeWitt ,&nbsp;Chris Dreyer ,&nbsp;Barry Finger ,&nbsp;Jonathan Goff ,&nbsp;Koki Ho ,&nbsp;Laura Kelsey ,&nbsp;Jim Keravala ,&nbsp;Bernard Kutter ,&nbsp;Philip Metzger ,&nbsp;Laura Montgomery ,&nbsp;Phillip Morrison ,&nbsp;Guangdong Zhu","doi":"10.1016/j.reach.2019.100026","DOIUrl":null,"url":null,"abstract":"<div><p>Aside<span><sup>2</sup></span><span> from Earth, the inner solar system is like a vast desert where water and other volatiles are scarce. An old saying is, “In the desert, gold is useless and water is priceless.” While water is common on Earth, it is of very high value in space. Science missions to the Moon<span> have provided direct evidence that regions near the lunar poles, which are permanently in shadow, contain substantial concentrations of water ice. On the lunar surface, water itself is critical for human consumption and radiation shielding, but water can also be decomposed into hydrogen and oxygen via electrolysis. The oxygen thus produced can be used for life support, and hydrogen and oxygen can be combusted for rocket propulsion. Due to the Moon’s shallow gravity well, its water-derived products can be exported to fuel entirely new economic opportunities in space.</span></span></p><p>This paper is the result of an examination by industry, government, and academic experts of the approach, challenges, and payoffs of a private business that harvests and processes lunar ice as the foundation of a lunar, cislunar (between the Earth and the Moon), and Earth-orbiting economy. A key assumption of this analysis is that all work—construction, operation, transport, maintenance and repair—is done by robotic systems. No human presence is required.</p><p>Obtaining more data on conditions within the shadowed regions is vital to the design of a lunar ice processing plant. How much water is actually present, and at what percentage in the lunar regolith? How firm or soft are the crater bottoms, and how will that affect surface transportation? How deep is the ice resource, and in what state is it deposited amongst the regolith? These and other questions must be answered by precursor prospecting and science missions.</p><p><span>A wide range of potential customers for the hydrogen and oxygen products has been identified. They can be used to fuel reusable landers going back and forth between the lunar surface and </span>lunar orbit. They can make travel to Mars less expensive if the interplanetary vehicle can be refueled in cislunar space prior to departure. Operations closer to Earth can also benefit from this new, inexpensive source of propellant. Refueling in Low Earth Orbit can greatly improve the size, type, and cost of missions to Geosynchronous Earth Orbit and beyond. This study has identified a near term annual demand of 450 metric tons of lunar derived propellant equating to 2450 metric tons of processed lunar water generating $2.4 billion of revenue annually.</p><p>Unlike terrestrial mining operations that utilize heavy machinery to move resources, the mass constraints of a lunar polar water mine are highly restrictive because of delivery cost. A revolutionary concept has been introduced that solves this issue. It has been discovered that instead of excavating, hauling, and processing, lightweight tents and/or heating augers can be used to extract the water resource directly out of the regolith in place. Water will be extracted from the regolith by sublimation—heating ice to convert it into water vapor without going through the liquid phase. This water vapor can then be collected on a cold surface for transport to a processing plant where electrolysis will decompose the water into its constituent parts (hydrogen and oxygen).</p><p>To achieve production demand with this method, 2.8 megawatts of power is required (2 megawatts electrical and 0.8 megawatts thermal). The majority of the electrical power will be needed in the processing plant, where water is broken down into hydrogen and oxygen. This substantial amount of power can come from solar panels, sunlight reflected directly to the extraction site, or nuclear power. Because the bottoms of the polar craters are permanently shadowed, captured solar energy must be transported from locations of sunlight (crater rim) via power beaming or power cables. Unlike solar power sources, nuclear reactors can operate at any location; however, they generate heat that must be utilized or rejected that may be simplified if located in the cold, permanently shadowed craters.</p><p>New or exotic technologies have been excluded from this study but may be incorporated into future architectures as they become available. Instead, the equipment described in this lunar propellant operation will be built from existing technologies that have been modified for the specific needs on the Moon. Surprisingly little new science is required to build this plant. Extensive testing on Earth will precede deployment to the Moon, to ensure that the robotics, extraction, chemical processing and storage all work together efficiently. The contributors to this study are those who are currently developing or have already developed the equipment required to enable this capability. From a technological perspective, a lunar propellant production plant is highly feasible.</p><p>Now is the time to establish the collaborations, partnerships, and leadership that can make this new commercial enterprise a reality. Currently, no one company has all of the capabilities necessary to build the lunar plant, but the capabilities all exist within United States aerospace industry and others (such as the chemical industry). It is necessary that new or existing competing companies establish the leadership needed to coordinate the variety of technologies required for a fully integrated Commercial Lunar Propellant Architecture. Free market competition among these companies will aid in driving down costs, promoting innovation, and expanding the market. To justify such action, a secure customer base, solid business case, and high fidelity economic model is required. This too will help secure the investment required for development and implementation.</p><p>The initial investment for this operation has been estimated at $4 billion, about the cost of a luxury hotel in Las Vegas. With this investment however, a scalable market can be accessed. As refueling decreases in-space transportation costs, entirely new business and exploration opportunities will emerge with potential to vastly benefit the economies of Earth. Even with the early customers identified within this study, it has been determined that this could be a profitable investment with excellent growth opportunities.</p><p><span>The United States Government has critical roles to play in the development of this commercial capability as well. Government science/prospecting and communications missions to the Moon can be very helpful in both the development and operational phases of the business. Government laboratories can contribute some of their technologies and help facilitate integrated systems tests of a terrestrial pilot plant. Government must also work to fill the gaps in international law regarding property rights on celestial bodies such as the Moon. In addition, between Earth orbit, Moon, and </span>Mars missions, government could be an important anchor customer for the resource, stimulating the private sector into action with proposed demands and price points while improving its mission costs and capabilities.</p><p>This study demonstrates both the technical and economic feasibility of establishing a commercial lunar propellant production capability. It provides recommendations to interested government and private organizations and defines a path to implementation; and explains that by doing so the United States will fuel a new age of economic expansion, sustained space exploration, settlement, and American leadership in space.</p></div>","PeriodicalId":37501,"journal":{"name":"REACH","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.reach.2019.100026","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"REACH","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352309318300099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 85

Abstract

Aside2 from Earth, the inner solar system is like a vast desert where water and other volatiles are scarce. An old saying is, “In the desert, gold is useless and water is priceless.” While water is common on Earth, it is of very high value in space. Science missions to the Moon have provided direct evidence that regions near the lunar poles, which are permanently in shadow, contain substantial concentrations of water ice. On the lunar surface, water itself is critical for human consumption and radiation shielding, but water can also be decomposed into hydrogen and oxygen via electrolysis. The oxygen thus produced can be used for life support, and hydrogen and oxygen can be combusted for rocket propulsion. Due to the Moon’s shallow gravity well, its water-derived products can be exported to fuel entirely new economic opportunities in space.

This paper is the result of an examination by industry, government, and academic experts of the approach, challenges, and payoffs of a private business that harvests and processes lunar ice as the foundation of a lunar, cislunar (between the Earth and the Moon), and Earth-orbiting economy. A key assumption of this analysis is that all work—construction, operation, transport, maintenance and repair—is done by robotic systems. No human presence is required.

Obtaining more data on conditions within the shadowed regions is vital to the design of a lunar ice processing plant. How much water is actually present, and at what percentage in the lunar regolith? How firm or soft are the crater bottoms, and how will that affect surface transportation? How deep is the ice resource, and in what state is it deposited amongst the regolith? These and other questions must be answered by precursor prospecting and science missions.

A wide range of potential customers for the hydrogen and oxygen products has been identified. They can be used to fuel reusable landers going back and forth between the lunar surface and lunar orbit. They can make travel to Mars less expensive if the interplanetary vehicle can be refueled in cislunar space prior to departure. Operations closer to Earth can also benefit from this new, inexpensive source of propellant. Refueling in Low Earth Orbit can greatly improve the size, type, and cost of missions to Geosynchronous Earth Orbit and beyond. This study has identified a near term annual demand of 450 metric tons of lunar derived propellant equating to 2450 metric tons of processed lunar water generating $2.4 billion of revenue annually.

Unlike terrestrial mining operations that utilize heavy machinery to move resources, the mass constraints of a lunar polar water mine are highly restrictive because of delivery cost. A revolutionary concept has been introduced that solves this issue. It has been discovered that instead of excavating, hauling, and processing, lightweight tents and/or heating augers can be used to extract the water resource directly out of the regolith in place. Water will be extracted from the regolith by sublimation—heating ice to convert it into water vapor without going through the liquid phase. This water vapor can then be collected on a cold surface for transport to a processing plant where electrolysis will decompose the water into its constituent parts (hydrogen and oxygen).

To achieve production demand with this method, 2.8 megawatts of power is required (2 megawatts electrical and 0.8 megawatts thermal). The majority of the electrical power will be needed in the processing plant, where water is broken down into hydrogen and oxygen. This substantial amount of power can come from solar panels, sunlight reflected directly to the extraction site, or nuclear power. Because the bottoms of the polar craters are permanently shadowed, captured solar energy must be transported from locations of sunlight (crater rim) via power beaming or power cables. Unlike solar power sources, nuclear reactors can operate at any location; however, they generate heat that must be utilized or rejected that may be simplified if located in the cold, permanently shadowed craters.

New or exotic technologies have been excluded from this study but may be incorporated into future architectures as they become available. Instead, the equipment described in this lunar propellant operation will be built from existing technologies that have been modified for the specific needs on the Moon. Surprisingly little new science is required to build this plant. Extensive testing on Earth will precede deployment to the Moon, to ensure that the robotics, extraction, chemical processing and storage all work together efficiently. The contributors to this study are those who are currently developing or have already developed the equipment required to enable this capability. From a technological perspective, a lunar propellant production plant is highly feasible.

Now is the time to establish the collaborations, partnerships, and leadership that can make this new commercial enterprise a reality. Currently, no one company has all of the capabilities necessary to build the lunar plant, but the capabilities all exist within United States aerospace industry and others (such as the chemical industry). It is necessary that new or existing competing companies establish the leadership needed to coordinate the variety of technologies required for a fully integrated Commercial Lunar Propellant Architecture. Free market competition among these companies will aid in driving down costs, promoting innovation, and expanding the market. To justify such action, a secure customer base, solid business case, and high fidelity economic model is required. This too will help secure the investment required for development and implementation.

The initial investment for this operation has been estimated at $4 billion, about the cost of a luxury hotel in Las Vegas. With this investment however, a scalable market can be accessed. As refueling decreases in-space transportation costs, entirely new business and exploration opportunities will emerge with potential to vastly benefit the economies of Earth. Even with the early customers identified within this study, it has been determined that this could be a profitable investment with excellent growth opportunities.

The United States Government has critical roles to play in the development of this commercial capability as well. Government science/prospecting and communications missions to the Moon can be very helpful in both the development and operational phases of the business. Government laboratories can contribute some of their technologies and help facilitate integrated systems tests of a terrestrial pilot plant. Government must also work to fill the gaps in international law regarding property rights on celestial bodies such as the Moon. In addition, between Earth orbit, Moon, and Mars missions, government could be an important anchor customer for the resource, stimulating the private sector into action with proposed demands and price points while improving its mission costs and capabilities.

This study demonstrates both the technical and economic feasibility of establishing a commercial lunar propellant production capability. It provides recommendations to interested government and private organizations and defines a path to implementation; and explains that by doing so the United States will fuel a new age of economic expansion, sustained space exploration, settlement, and American leadership in space.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商业月球推进剂结构:月球推进剂生产的协同研究
目前,没有一家公司拥有建造月球工厂所需的全部能力,但这些能力都存在于美国航空航天工业和其他行业(如化学工业)。新的或现有的竞争公司有必要建立领导地位,以协调完全集成的商业月球推进剂架构所需的各种技术。这些公司之间的自由市场竞争将有助于降低成本、促进创新和扩大市场。为了证明这种行为的合理性,需要一个安全的客户基础、可靠的商业案例和高保真的经济模型。这也将有助于确保发展和实施所需的投资。这项行动的初始投资估计为40亿美元,大约是拉斯维加斯一家豪华酒店的成本。然而,有了这笔投资,就可以进入一个可扩展的市场。随着燃料补给降低太空运输成本,全新的商业和勘探机会将出现,并有可能极大地造福地球经济。即使在本研究中确定了早期客户,也已确定这可能是一项具有良好增长机会的有利可图的投资。美国政府在发展这种商业能力方面也可以发挥关键作用。政府对月球的科学/勘探和通信任务在业务的开发和运营阶段都非常有帮助。政府实验室可以提供它们的一些技术,并帮助促进地面试验工厂的综合系统测试。政府还必须努力填补有关月球等天体产权的国际法空白。此外,在地球轨道、月球和火星任务之间,政府可以成为资源的重要锚定客户,刺激私营部门采取行动,提出需求和价格点,同时提高其任务成本和能力。这项研究证明了建立商业月球推进剂生产能力的技术和经济可行性。它向感兴趣的政府和私人组织提供建议,并确定实施途径;并解释说,通过这样做,美国将推动经济扩张、持续的太空探索、定居和美国在太空中的领导地位的新时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
REACH
REACH Engineering-Aerospace Engineering
CiteScore
2.00
自引率
0.00%
发文量
4
期刊介绍: The Official Human Space Exploration Review Journal of the International Academy of Astronautics (IAA) and the International Astronautical Federation (IAF) REACH – Reviews in Human Space Exploration is an international review journal that covers the entire field of human space exploration, including: -Human Space Exploration Mission Scenarios -Robotic Space Exploration Missions (Preparing or Supporting Human Missions) -Commercial Human Spaceflight -Space Habitation and Environmental Health -Space Physiology, Psychology, Medicine and Environmental Health -Space Radiation and Radiation Biology -Exo- and Astrobiology -Search for Extraterrestrial Intelligence (SETI) -Spin-off Applications from Human Spaceflight -Benefits from Space-Based Research for Health on Earth -Earth Observation for Agriculture, Climate Monitoring, Disaster Mitigation -Terrestrial Applications of Space Life Sciences Developments -Extreme Environments REACH aims to meet the needs of readers from academia, industry, and government by publishing comprehensive overviews of the science of human and robotic space exploration, life sciences research in space, and beneficial terrestrial applications that are derived from spaceflight. Special emphasis will be put on summarizing the most important recent developments and challenges in each of the covered fields, and on making published articles legible for a non-specialist audience. Authors can also submit non-solicited review articles. Please note that original research articles are not published in REACH. The Journal plans to publish four issues per year containing six to eight review articles each.
期刊最新文献
Mental health implications for aviators from COVID-19 Has Mars become the new space Race? And are we able to justify space Exploration? Enabling innovative research on the International Space Station to solve the challenges of a human mission to Mars: Results of the ISS4Mars international workshops 2020–2021 Commercial space tourism: An integrative review of spaceflight participant psychological assessment and training Menstrual management considerations in the space environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1