{"title":"Graminification and Reversal of Mesophication in a Restored Oak Woodland","authors":"Alicia L. Arrington-Thomas, John Stephen Brewer","doi":"10.3368/er.41.2-3.109","DOIUrl":null,"url":null,"abstract":"ABSTRACT Modern fire exclusion in upland oak- and oak-pine-dominated forests has resulted in reduced flammability of surface fuels as a result of the replacement of flammable fuels of oaks and associated vegetation by less flammable fuels produced by mesophytic trees. Some consequences of such “mesophication” include reductions in herb diversity, C4 grasses, and oak regeneration. We tested two hypotheses of the effects of C4 grasses and tree leaf litter on fuel consumption in the field in restored and unrestored oak woodlands: 1) the presence of C4 grasses increases fuel consumption by a late growing-season prescribed fire (“graminification”), and 2) removing tree leaf fuels reduces fuel consumption by a late growing-season fire to a greater extent in areas lacking substantial, slow-to-dry mesophyte tree leaf litter (mesophication reversal). Consistent with graminification, removing C4 grasses in a restored oak woodland reduced fuel consumption, and fuel consumption was greater following tree leaf litter removal in restored woodland plots containing C4 grasses than in areas that had not been restored and that lacked such grasses. Consistent with mesophication reversal, removing tree leaf fuels reduced fuel consumption to a greater extent in areas where tree leaf litter was dominated by pyrophytic oaks than in an untreated area with a significant amount of mesophyte tree leaf litter. We conclude that mesophication can be reversed at early stages of restoration by thinning mesophytic trees and opening the canopy. Increases in C4 grasses (graminification) at late stages of restoration further increase flammability.","PeriodicalId":11492,"journal":{"name":"Ecological Restoration","volume":"41 1","pages":"109 - 118"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Restoration","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3368/er.41.2-3.109","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Modern fire exclusion in upland oak- and oak-pine-dominated forests has resulted in reduced flammability of surface fuels as a result of the replacement of flammable fuels of oaks and associated vegetation by less flammable fuels produced by mesophytic trees. Some consequences of such “mesophication” include reductions in herb diversity, C4 grasses, and oak regeneration. We tested two hypotheses of the effects of C4 grasses and tree leaf litter on fuel consumption in the field in restored and unrestored oak woodlands: 1) the presence of C4 grasses increases fuel consumption by a late growing-season prescribed fire (“graminification”), and 2) removing tree leaf fuels reduces fuel consumption by a late growing-season fire to a greater extent in areas lacking substantial, slow-to-dry mesophyte tree leaf litter (mesophication reversal). Consistent with graminification, removing C4 grasses in a restored oak woodland reduced fuel consumption, and fuel consumption was greater following tree leaf litter removal in restored woodland plots containing C4 grasses than in areas that had not been restored and that lacked such grasses. Consistent with mesophication reversal, removing tree leaf fuels reduced fuel consumption to a greater extent in areas where tree leaf litter was dominated by pyrophytic oaks than in an untreated area with a significant amount of mesophyte tree leaf litter. We conclude that mesophication can be reversed at early stages of restoration by thinning mesophytic trees and opening the canopy. Increases in C4 grasses (graminification) at late stages of restoration further increase flammability.
期刊介绍:
Ecological Restoration is a forum for people advancing the science and practice of restoration ecology. It features the technical and biological aspects of restoring landscapes, as well as collaborations between restorationists and the design professions, land-use policy, the role of education, and more. This quarterly publication includes peer-reviewed science articles, perspectives and notes, book reviews, abstracts of restoration ecology progress published elsewhere, and announcements of scientific and professional meetings.