Lambda calculus with algebraic simplification for reduction parallelisation: Extended study

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Functional Programming Pub Date : 2021-04-05 DOI:10.1017/S0956796821000058
Akimasa Morihata
{"title":"Lambda calculus with algebraic simplification for reduction parallelisation: Extended study","authors":"Akimasa Morihata","doi":"10.1017/S0956796821000058","DOIUrl":null,"url":null,"abstract":"Abstract Parallel reduction is a major component of parallel programming and widely used for summarisation and aggregation. It is not well understood, however, what sorts of non-trivial summarisations can be implemented as parallel reductions. This paper develops a calculus named λAS, a simply typed lambda calculus with algebraic simplification. This calculus provides a foundation for studying a parallelisation of complex reductions by equational reasoning. Its key feature is δ abstraction. A δ abstraction is observationally equivalent to the standard λ abstraction, but its body is simplified before the arrival of its arguments using algebraic properties such as associativity and commutativity. In addition, the type system of λAS guarantees that simplifications due to δ abstractions do not lead to serious overheads. The usefulness of λAS is demonstrated on examples of developing complex parallel reductions, including those containing more than one reduction operator, loops with conditional jumps, prefix sum patterns and even tree manipulations.","PeriodicalId":15874,"journal":{"name":"Journal of Functional Programming","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0956796821000058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0956796821000058","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Parallel reduction is a major component of parallel programming and widely used for summarisation and aggregation. It is not well understood, however, what sorts of non-trivial summarisations can be implemented as parallel reductions. This paper develops a calculus named λAS, a simply typed lambda calculus with algebraic simplification. This calculus provides a foundation for studying a parallelisation of complex reductions by equational reasoning. Its key feature is δ abstraction. A δ abstraction is observationally equivalent to the standard λ abstraction, but its body is simplified before the arrival of its arguments using algebraic properties such as associativity and commutativity. In addition, the type system of λAS guarantees that simplifications due to δ abstractions do not lead to serious overheads. The usefulness of λAS is demonstrated on examples of developing complex parallel reductions, including those containing more than one reduction operator, loops with conditional jumps, prefix sum patterns and even tree manipulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
λ演算与代数简化减少并行化:扩展研究
摘要并行约简是并行编程的一个重要组成部分,广泛用于摘要和聚合。然而,人们还不太清楚,什么样的非琐碎的总结可以作为并行缩减来实现。本文发展了λAS微积分,一个具有代数化简的简单型λ微积分。这种演算方法为通过方程推理来研究复杂约简的并行化提供了基础。它的主要特点是δ抽象。一个δ抽象在观测上等同于标准λ抽象,但是在它的参数到来之前,它的主体被简化了,使用了诸如结合性和交换性之类的代数性质。此外,λAS的类型系统保证了由于δ抽象而进行的简化不会导致严重的开销。λAS的有用性通过开发复杂并行约简的例子得到了证明,包括那些包含多个约简算子的并行约简,带有条件跳跃的循环,前缀和模式,甚至树操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Functional Programming
Journal of Functional Programming 工程技术-计算机:软件工程
CiteScore
1.70
自引率
0.00%
发文量
9
审稿时长
>12 weeks
期刊介绍: Journal of Functional Programming is the only journal devoted solely to the design, implementation, and application of functional programming languages, spanning the range from mathematical theory to industrial practice. Topics covered include functional languages and extensions, implementation techniques, reasoning and proof, program transformation and synthesis, type systems, type theory, language-based security, memory management, parallelism and applications. The journal is of interest to computer scientists, software engineers, programming language researchers and mathematicians interested in the logical foundations of programming.
期刊最新文献
Signature restriction for polymorphic algebraic effects Asymptotic speedup via effect handlers Static Blame for gradual typing Knuth–Morris–Pratt illustrated Sparcl: A language for partially invertible computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1