Matej Peranić, Marcus Clark, Rui Wang, Sima Bahrani, Obada Alia, Sören Wengerowsky, Anton Radman, Martin Lončarić, Mario Stipčević, John Rarity, Reza Nejabati, Siddarth Koduru Joshi
{"title":"A study of polarization compensation for quantum networks","authors":"Matej Peranić, Marcus Clark, Rui Wang, Sima Bahrani, Obada Alia, Sören Wengerowsky, Anton Radman, Martin Lončarić, Mario Stipčević, John Rarity, Reza Nejabati, Siddarth Koduru Joshi","doi":"10.1140/epjqt/s40507-023-00187-w","DOIUrl":null,"url":null,"abstract":"<div><p>The information-theoretic unconditional security offered by quantum key distribution has spurred the development of larger quantum communication networks. However, as these networks grow so does the strong need to reduce complexity and overheads. Polarization-based entanglement distribution networks are a promising approach due to their scalability and no need for trusted nodes. Nevertheless, they are only viable if the birefringence of all-optical distribution fibres in the network is compensated to preserve the polarization-based quantum state. The brute force approach would require a few hundred fibre polarization controllers for even a moderately sized network. Instead, we propose and investigate four different realizations of polarization compensation schemes that can be used in quantum networks. We compare them based on the type of reference signals, complexity, effort, level of disruption to network operations and performance on a four-user quantum network.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00187-w","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00187-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
The information-theoretic unconditional security offered by quantum key distribution has spurred the development of larger quantum communication networks. However, as these networks grow so does the strong need to reduce complexity and overheads. Polarization-based entanglement distribution networks are a promising approach due to their scalability and no need for trusted nodes. Nevertheless, they are only viable if the birefringence of all-optical distribution fibres in the network is compensated to preserve the polarization-based quantum state. The brute force approach would require a few hundred fibre polarization controllers for even a moderately sized network. Instead, we propose and investigate four different realizations of polarization compensation schemes that can be used in quantum networks. We compare them based on the type of reference signals, complexity, effort, level of disruption to network operations and performance on a four-user quantum network.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.