Performance improvement and microstructure evolution of powder metallurgy high silicon steel with phosphorus addition

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Powder Metallurgy Pub Date : 2022-05-26 DOI:10.1080/00325899.2022.2080156
Q. Qin, Fang Yang, Cun-guang Chen, Junjie Hao, Zhimeng Guo
{"title":"Performance improvement and microstructure evolution of powder metallurgy high silicon steel with phosphorus addition","authors":"Q. Qin, Fang Yang, Cun-guang Chen, Junjie Hao, Zhimeng Guo","doi":"10.1080/00325899.2022.2080156","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, phosphorus-containing Fe-5 wt.% Si silicon steel sheet was prepared by powder loose sintering followed by hot rolling. Defect-free sheet with high P content was achieved. The study found that P effects on sintering promotion and processing deterioration were significantly suppressed by the presence of Si in steel. Appropriate P content would significantly improve the mechanical and magnetic properties of the sample. Under a comprehensive consideration, P content of 0.3-0.5 wt.% was suitable for silicon steel. Compared with P-free silicon steel, with 0.3 wt.% P addition, the tensile strength of silicon steel increased from 521 MPa to 680 MPa. As to the magnetic performance, the sample with 0.5 wt.% P had B8 of 1370.5 mT, and W10/50 0f 1.16 W·kg−1, while those for P-free sample were 1332.3 mT, and 1.46 W·kg−1, respectively. FeP phase with special morphology would be precipitated in samples with P addition.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"43 - 53"},"PeriodicalIF":1.9000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2022.2080156","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In this study, phosphorus-containing Fe-5 wt.% Si silicon steel sheet was prepared by powder loose sintering followed by hot rolling. Defect-free sheet with high P content was achieved. The study found that P effects on sintering promotion and processing deterioration were significantly suppressed by the presence of Si in steel. Appropriate P content would significantly improve the mechanical and magnetic properties of the sample. Under a comprehensive consideration, P content of 0.3-0.5 wt.% was suitable for silicon steel. Compared with P-free silicon steel, with 0.3 wt.% P addition, the tensile strength of silicon steel increased from 521 MPa to 680 MPa. As to the magnetic performance, the sample with 0.5 wt.% P had B8 of 1370.5 mT, and W10/50 0f 1.16 W·kg−1, while those for P-free sample were 1332.3 mT, and 1.46 W·kg−1, respectively. FeP phase with special morphology would be precipitated in samples with P addition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加磷对粉末冶金高硅钢性能的改善及组织演变
摘要在本研究中,含磷的Fe-5 通过粉末松散烧结然后热轧制备wt.%Si硅钢片。实现了具有高P含量的无缺陷片材。研究发现,钢中Si的存在显著抑制了P对烧结促进和工艺劣化的影响。适当的P含量将显著改善样品的机械和磁性能。综合考虑,P含量为0.3-0.5 wt.%适用于硅钢。与无磷硅钢相比,添加0.3wt.%P后,硅钢的抗拉强度从521MPa提高到680MPa。关于磁性性能,0.5 wt.%P的B8为1370.5 mT和W10/50 0f 1.16 Wõkg−1,而无磷样品为1332.3 mT和1.46 Wõkg−1。在添加磷的样品中会析出具有特殊形态的FeP相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
期刊最新文献
Can children with negative polysomnography results always be non-OSA controls? Advancement of thermoelectric performances through the dispersion of expanded graphene on p-type BiSbTe alloys Synthesis of Li1.3Al0.3Ti1.7(PO4)3-coated LiCoO2 cathode powder for all-solid-state lithium batteries Development of TiCN-Co-Cr3C2-Si3N4-based cermets with improved hardness and toughness for cutting tool applications Grain refinement and coercivity enhancement of sintered Nd–Fe–B alloys by doping eutectic alloy (Nd0.75Pr0.25)70Cu30.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1