Effect of high temperature annealing on cryogenic transport properties of silicon MOSFETs with a thin SiO2/HfO2 stacked dielectric

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Semiconductor Science and Technology Pub Date : 2023-08-25 DOI:10.1088/1361-6641/acf407
Ze Li, Guodong Yuan, Di Zhang, Yumeng Liu, Haoran Long, Li He, Dechen Wang, Zhongming Wei, Junwei Luo
{"title":"Effect of high temperature annealing on cryogenic transport properties of silicon MOSFETs with a thin SiO2/HfO2 stacked dielectric","authors":"Ze Li, Guodong Yuan, Di Zhang, Yumeng Liu, Haoran Long, Li He, Dechen Wang, Zhongming Wei, Junwei Luo","doi":"10.1088/1361-6641/acf407","DOIUrl":null,"url":null,"abstract":"Quantum computing is expected to break the computing power bottleneck with the help of quantum superposition and quantum entanglement. In order to fabricate fault-tolerant quantum computers for encoding quantum information, it is important to improve the cryogenic mobility of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) with a thin gate dielectric layer as much as possible. Based on a thin SiO2/HfO2 stacked dielectric, we investigate the effect of post-deposition annealing (PDA) temperature on the MOSFET cryogenic transport properties. The results show that silicon atoms will diffuse into the HfO2 to form silicates during PDA, leading to the HfO2 dielectric constant decrease. As the PDA temperature increases, the proportion of monoclinic hafnium oxide decreases and the tetragonal phase increases gradually. The oxygen vacancy content increases gradually, resulting in fixed charge density increases and the mobility decreases. The contribution of the forming gas annealing (FGA) to the mobility enhancement is clarified and the HfO2 recrystallization process is revealed from the perspective of long-time annealing. Finally, the mobility peak of silicon MOSFETs with thin SiO2/HfO2 dielectrics is enhanced to 1387 cm2(V·s)−1 at 1.6 K, which provides a technical pathway for the development of silicon-based quantum computation.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/acf407","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computing is expected to break the computing power bottleneck with the help of quantum superposition and quantum entanglement. In order to fabricate fault-tolerant quantum computers for encoding quantum information, it is important to improve the cryogenic mobility of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) with a thin gate dielectric layer as much as possible. Based on a thin SiO2/HfO2 stacked dielectric, we investigate the effect of post-deposition annealing (PDA) temperature on the MOSFET cryogenic transport properties. The results show that silicon atoms will diffuse into the HfO2 to form silicates during PDA, leading to the HfO2 dielectric constant decrease. As the PDA temperature increases, the proportion of monoclinic hafnium oxide decreases and the tetragonal phase increases gradually. The oxygen vacancy content increases gradually, resulting in fixed charge density increases and the mobility decreases. The contribution of the forming gas annealing (FGA) to the mobility enhancement is clarified and the HfO2 recrystallization process is revealed from the perspective of long-time annealing. Finally, the mobility peak of silicon MOSFETs with thin SiO2/HfO2 dielectrics is enhanced to 1387 cm2(V·s)−1 at 1.6 K, which provides a technical pathway for the development of silicon-based quantum computation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温退火对薄SiO2/HfO2堆叠介质硅mosfet低温输运性能的影响
量子计算有望借助量子叠加和量子纠缠打破算力瓶颈。为了制造用于编码量子信息的容错量子计算机,尽可能提高具有薄栅极电介质层的硅基金属氧化物半导体场效应晶体管(MOSFET)的低温迁移率是重要的。基于薄SiO2/HfO2堆叠电介质,我们研究了沉积后退火(PDA)温度对MOSFET低温传输特性的影响。结果表明,在PDA过程中,硅原子会扩散到HfO2中形成硅酸盐,导致HfO2介电常数降低。随着PDA温度的升高,单斜氧化铪的比例降低,四方相逐渐增加。氧空位含量逐渐增加,导致固定电荷密度增加,迁移率降低。阐明了成形气体退火(FGA)对迁移率提高的贡献,并从长时间退火的角度揭示了HfO2再结晶过程。最后,具有薄SiO2/HfO2电介质的硅MOSFET的迁移率峰值在1.6K时提高到1387cm2(V·s)−1,这为硅基量子计算的发展提供了技术途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
期刊最新文献
Effect of atomic layer deposition process parameters on TiN electrode for Hf0.5Zr0.5O2 ferroelectric capacitor The ab initio study of n-type nitrogen and gallium co-doped diamond Self-powered Schottky barrier photodetector with high responsivity based on homoepitaxial Ga2O3 films by MOCVD Sub-bandgap excited photoluminescence probing of deep defect complexes in GaN doped by Si, Ge and C impurities The effect of temperature on the electrical characteristics of zigzag and armchair black phosphorus based 2D MOSFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1