Frequency-tunable resonant hybrid vibration energy harvester using a piezoelectric cantilever with electret-based electrostatic coupling

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Nanodielectrics Pub Date : 2023-03-29 DOI:10.1049/nde2.12043
Yue Feng, Zilong Zhou, Haosun Luo, Ruiguo Wang, Yanhui Han, Ying Xiong
{"title":"Frequency-tunable resonant hybrid vibration energy harvester using a piezoelectric cantilever with electret-based electrostatic coupling","authors":"Yue Feng,&nbsp;Zilong Zhou,&nbsp;Haosun Luo,&nbsp;Ruiguo Wang,&nbsp;Yanhui Han,&nbsp;Ying Xiong","doi":"10.1049/nde2.12043","DOIUrl":null,"url":null,"abstract":"<p>Hybrid vibration energy harvesting technology converts vibration energy into electricity using multiple transduction mechanisms to improve output power. A frequency-tunable resonant hybrid vibration energy harvester using a piezoelectric cantilever with electret-based electrostatic coupling is proposed in this article. The electrostatic coupling including electrostatic force coupling and electrical damping coupling is introduced by an electret film placed below the cantilever, where the electrostatic force acting on the cantilever realises a tunable resonant frequency and additional electrical damping boosts power output. A coupling electromechanical model is derived using Euler–Bernoulli beam theory and Kirchhoff's law. By investigating the static and dynamic stability of cantilever, the maximum electret surface potential is defined to prevent the pull-in phenomenon. The damping of the device is evaluated, and the optimal electret surface potential is determined to obtain the matching of the electrical and mechanical damping for maximum power output. The resonant frequency of hybrid vibration energy harvester can be adjusted in range of 176.1 rad/s by changing the electret surface potential and resistive load. The experimental output power of hybrid vibration energy harvester was 5.2 μW, 27.4 times higher than that of the individual piezoelectric generator. The proposed hybrid vibration energy harvester exhibits a promising potential to power microelectronic devices and wireless sensor network node.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12043","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Hybrid vibration energy harvesting technology converts vibration energy into electricity using multiple transduction mechanisms to improve output power. A frequency-tunable resonant hybrid vibration energy harvester using a piezoelectric cantilever with electret-based electrostatic coupling is proposed in this article. The electrostatic coupling including electrostatic force coupling and electrical damping coupling is introduced by an electret film placed below the cantilever, where the electrostatic force acting on the cantilever realises a tunable resonant frequency and additional electrical damping boosts power output. A coupling electromechanical model is derived using Euler–Bernoulli beam theory and Kirchhoff's law. By investigating the static and dynamic stability of cantilever, the maximum electret surface potential is defined to prevent the pull-in phenomenon. The damping of the device is evaluated, and the optimal electret surface potential is determined to obtain the matching of the electrical and mechanical damping for maximum power output. The resonant frequency of hybrid vibration energy harvester can be adjusted in range of 176.1 rad/s by changing the electret surface potential and resistive load. The experimental output power of hybrid vibration energy harvester was 5.2 μW, 27.4 times higher than that of the individual piezoelectric generator. The proposed hybrid vibration energy harvester exhibits a promising potential to power microelectronic devices and wireless sensor network node.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用压电悬臂梁与驻极体静电耦合的频率可调谐振混合振动能量采集器
混合振动能量收集技术利用多种转导机制将振动能量转化为电能,提高输出功率。提出了一种利用压电悬臂梁与驻极体静电耦合的频率可调谐振混合振动能量采集器。静电耦合包括静电力耦合和电阻尼耦合,通过放置在悬臂下面的驻极体膜引入,其中作用在悬臂上的静电力实现可调谐的谐振频率,额外的电阻尼提高功率输出。利用欧拉-伯努利光束理论和基尔霍夫定律推导了耦合机电模型。通过研究悬臂梁的静、动稳定性,确定了最大驻极体表面电位,以防止出现拉入现象。评估了器件的阻尼,确定了最佳驻极体表面电位,以获得最大功率输出的电阻尼和机械阻尼的匹配。通过改变驻极体表面电位和阻性负载,可在176.1 rad/s范围内调节混合振动能量采集器的谐振频率。混合振动能量采集器的实验输出功率为5.2 μW,是单个压电发生器输出功率的27.4倍。该混合振动能量采集器在微电子器件和无线传感器网络节点供电方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
期刊最新文献
A combined technique for power transformer fault diagnosis based on k-means clustering and support vector machine Stability of giant dielectric properties in co‐doped rutile TiO2 ceramics under temperature and humidity High‐performance sulphur dioxide sensor: Unveiling the potential of photonic crystal fibre technology Improvement in non-linear electrical conductivity of silicone rubber by incorporating zinc oxide fillers and grafting small polar molecules Traditional fault diagnosis methods for mineral oil-immersed power transformer based on dissolved gas analysis: Past, present and future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1