Numerical analysis on the effect of passive control geometry in supersonic jet mixing enhancement

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE International Journal of Turbo & Jet-Engines Pub Date : 2023-08-29 DOI:10.1515/tjj-2023-0068
N. Subramani, S. M, Gowtham Gajapathy
{"title":"Numerical analysis on the effect of passive control geometry in supersonic jet mixing enhancement","authors":"N. Subramani, S. M, Gowtham Gajapathy","doi":"10.1515/tjj-2023-0068","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents the numerical analysis of a convergent-divergent circular nozzle with the exit Mach number of 1.69 with and without passive control at the exit. The passive control method opted for this analysis was inward and outward ascending triangular protrusion. This paper explores the influence of the passive control geometry and its blockage area concerning the nozzle exit. The nozzle pressure ratio (NPR) used for carrying out the flow analysis were 3, 4.932, and 6. Two different inward and outward protrusions were used with a height of 1.5 mm and 3 mm. From the results, the potential core length of the protrusion 1.5 mm height was not much changed in the both outward and inward cases. But when the height of the protrusion was increased to 3 mm, there was a noticeable core length reduction at all NPR but with different cases. At the NPR of 6, the potential core length of the inward protrusions 3 mm was reduced by 44 % compared to the plain CD nozzle.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2023-0068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper presents the numerical analysis of a convergent-divergent circular nozzle with the exit Mach number of 1.69 with and without passive control at the exit. The passive control method opted for this analysis was inward and outward ascending triangular protrusion. This paper explores the influence of the passive control geometry and its blockage area concerning the nozzle exit. The nozzle pressure ratio (NPR) used for carrying out the flow analysis were 3, 4.932, and 6. Two different inward and outward protrusions were used with a height of 1.5 mm and 3 mm. From the results, the potential core length of the protrusion 1.5 mm height was not much changed in the both outward and inward cases. But when the height of the protrusion was increased to 3 mm, there was a noticeable core length reduction at all NPR but with different cases. At the NPR of 6, the potential core length of the inward protrusions 3 mm was reduced by 44 % compared to the plain CD nozzle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
被动控制几何结构对超声速射流混合增强影响的数值分析
摘要本文对出口马赫数为1.69的收敛-发散圆形喷嘴进行了数值分析,在出口处有和没有被动控制。本次分析采用的被动控制方法是向内和向外上升的三角形突起。本文探讨了被动控制几何结构及其堵塞面积对喷嘴出口的影响。用于进行流动分析的喷嘴压力比(NPR)分别为3、4.932和6。使用了两个不同的向内和向外突起,高度为1.5 mm和3 根据结果,突起的潜在核心长度为1.5 mm高度在向外和向内两种情况下变化不大。但当突起的高度增加到3 mm时,在所有NPR下都有明显的核心长度减少,但情况不同。在NPR为6时,向内突起3的潜在芯长度 毫米减少了44 % 与普通CD喷嘴相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
期刊最新文献
The International Journal of Turbo and Jet Engines Research on high-bandwidth linear active disturbance rejection control method for variable speed turboshaft engine Influence of inlet structure on combustion flow structure in magnesium powder fueled water ramjet engine C conjugate heat transfer simulation of swirl internal cooling on blade leading edge Effect of velocity ratio and Mach number on thin lip coaxial jet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1