Manufacturing flow batteries using advanced 3D printing technology—A review

IF 2.5 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in chemical engineering Pub Date : 2023-04-05 DOI:10.3389/fceng.2023.1144237
Ji Wu, Shaowen Xu
{"title":"Manufacturing flow batteries using advanced 3D printing technology—A review","authors":"Ji Wu, Shaowen Xu","doi":"10.3389/fceng.2023.1144237","DOIUrl":null,"url":null,"abstract":"In the past decade, electrochemical energy storage systems such as rechargeable batteries have been explored as potential candidates for the large-scale storage of intermittent power sources. Among these, redox flow batteries stand out due to their low fabrication costs, high scalability, and long cycle life. Several redox flow battery pilot plants with MWh capacity have been constructed worldwide, although their commercial profitability is currently under investigation. 3D printing as a burgeoning technology offers unlimited opportunities in the process of optimizing the design, performance, and fabrication cost of redox flow batteries as compared to traditional top-down manufacturing techniques. This review discusses the principles of various redox flow batteries and 3D printing techniques, followed by explaining the advantages, disadvantages, and major factors to consider when using 3D printing in the construction of efficient redox flow batteries. The practical applications of 3D printing for redox flow batteries with different redox chemistries in the past decade are critically summarized, including classical all-vanadium, Zn/Br, and novel competitors. Lastly, a summary is provided along with outlooks that may provide valuable guidance for scientists interested in this research frontier.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in chemical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceng.2023.1144237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the past decade, electrochemical energy storage systems such as rechargeable batteries have been explored as potential candidates for the large-scale storage of intermittent power sources. Among these, redox flow batteries stand out due to their low fabrication costs, high scalability, and long cycle life. Several redox flow battery pilot plants with MWh capacity have been constructed worldwide, although their commercial profitability is currently under investigation. 3D printing as a burgeoning technology offers unlimited opportunities in the process of optimizing the design, performance, and fabrication cost of redox flow batteries as compared to traditional top-down manufacturing techniques. This review discusses the principles of various redox flow batteries and 3D printing techniques, followed by explaining the advantages, disadvantages, and major factors to consider when using 3D printing in the construction of efficient redox flow batteries. The practical applications of 3D printing for redox flow batteries with different redox chemistries in the past decade are critically summarized, including classical all-vanadium, Zn/Br, and novel competitors. Lastly, a summary is provided along with outlooks that may provide valuable guidance for scientists interested in this research frontier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用先进的3D打印技术制造液流电池——综述
在过去的十年中,诸如可充电电池之类的电化学储能系统已经被探索为大规模存储间歇性电源的潜在候选者。其中,氧化还原液流电池因其低制造成本、高可扩展性和长循环寿命而脱颖而出。世界范围内已经建成了几个MWh容量的氧化还原液流电池中试工厂,尽管它们的商业盈利能力目前还在调查中。与传统的自上而下的制造技术相比,3D打印作为一种新兴技术,在优化氧化还原液流电池的设计、性能和制造成本方面提供了无限的机会。本文讨论了各种氧化还原液流电池和3D打印技术的原理,然后解释了使用3D打印技术构建高效氧化还原液流电池的优点、缺点和主要考虑因素。总结了近十年来3D打印技术在不同氧化还原化学物质氧化还原液流电池中的实际应用,包括经典的全钒电池、锌/溴电池和新型竞争电池。最后,总结和展望可能为对这一研究前沿感兴趣的科学家提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Editorial: The role of agave as feedstock within a sustainable circular bioeconomy Title: waste to wealth: the power of food-waste anaerobic digestion integrated with lactic acid fermentation Brewers’ spent grain pretreatment optimisation to enhance enzymatic hydrolysis of whole slurry and resuspended pellet Review of the recent advances on the fabrication, modification and application of electrospun TiO2 and ZnO nanofibers for the treatment of organic pollutants in wastewater Receptors for the recognition and extraction of lithium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1