{"title":"Computing strain-dependent energy transfer from quantum dots to 2D materials","authors":"E. Simsek, B. Aslan","doi":"10.1088/2399-1984/acddb2","DOIUrl":null,"url":null,"abstract":"Near-field interaction between the monolayers of two-dimensional (2D) materials has been recently investigated. Another branch under investigation has been the interaction between 2D materials and zero-dimensional (0D) nanostructures including quantum dots (QDs) and metal nanoparticles. In this work, we take one more step to engineering the interaction between those systems. We probe the effect of mechanical strain on the non-radiative energy transfer (NRET) rate from a 0D material, ZnCdSe/ZnSe QD, to a 2D material, monolayer (1L) WS2. It is known that the mechanical strain causes large shifts to the exciton energies in 1L WS2. As a result, our calculations show that strain can tune the NRET rate by engineering the overlap between the emission spectrum of ZnCdSe/ZnSe QD and the exciton resonances of 1L WS2.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/acddb2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Near-field interaction between the monolayers of two-dimensional (2D) materials has been recently investigated. Another branch under investigation has been the interaction between 2D materials and zero-dimensional (0D) nanostructures including quantum dots (QDs) and metal nanoparticles. In this work, we take one more step to engineering the interaction between those systems. We probe the effect of mechanical strain on the non-radiative energy transfer (NRET) rate from a 0D material, ZnCdSe/ZnSe QD, to a 2D material, monolayer (1L) WS2. It is known that the mechanical strain causes large shifts to the exciton energies in 1L WS2. As a result, our calculations show that strain can tune the NRET rate by engineering the overlap between the emission spectrum of ZnCdSe/ZnSe QD and the exciton resonances of 1L WS2.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.