Pub Date : 2024-09-15DOI: 10.1088/2399-1984/ad7802
Diyar Salahuddin Ali, Hazha Omar Othman, Sarhang Hayyas Mohammed, Rebwar Omar Hassan, Zahraa Sarkawt Faethullah, Roza Ibrahim Kareem and Slim Smaoui
The new strategies in this regard of nanotechnology and biotechnology guarantee new, efficient modalities for cancer therapy. In this study, we explore nanobiohybrids, the bacterium-targeted cancer treatment approach that presents a new category of therapeutic carriers for treating cancer. We specifically focus on bacteriomimetics, where bacteria are used as natural carriers for therapeutic agents. These bacteria possess the ability of pathotropism in localizing themselves around tumor tissues, even hypoxic areas that are generally refractory to standard therapies. By engineering the surface of these bacteria, we enhance how they target tumor cells so that treatment is delivered specifically to the tumor microenvironment with no or minimal systemic side effects. Furthermore, these synthetic nanoparticles inculcated into these bacterial systems stabilize drugs and also provide a way for controlled release, which is important to maintain therapeutic effectiveness. Our results established that such nanobiohybrids are capable of efficient delivery of chemotherapeutic agents and of conducting a local real-time therapeutic response from the perspective of personalized cancer treatment. This research implies a huge development in targeted therapy against cancer, and further work has focused on optimizing these biohybrid systems for clinical applications.
{"title":"Nanobiohybrids and bacterial carriers: a novel pathway to targeted cancer therapy","authors":"Diyar Salahuddin Ali, Hazha Omar Othman, Sarhang Hayyas Mohammed, Rebwar Omar Hassan, Zahraa Sarkawt Faethullah, Roza Ibrahim Kareem and Slim Smaoui","doi":"10.1088/2399-1984/ad7802","DOIUrl":"https://doi.org/10.1088/2399-1984/ad7802","url":null,"abstract":"The new strategies in this regard of nanotechnology and biotechnology guarantee new, efficient modalities for cancer therapy. In this study, we explore nanobiohybrids, the bacterium-targeted cancer treatment approach that presents a new category of therapeutic carriers for treating cancer. We specifically focus on bacteriomimetics, where bacteria are used as natural carriers for therapeutic agents. These bacteria possess the ability of pathotropism in localizing themselves around tumor tissues, even hypoxic areas that are generally refractory to standard therapies. By engineering the surface of these bacteria, we enhance how they target tumor cells so that treatment is delivered specifically to the tumor microenvironment with no or minimal systemic side effects. Furthermore, these synthetic nanoparticles inculcated into these bacterial systems stabilize drugs and also provide a way for controlled release, which is important to maintain therapeutic effectiveness. Our results established that such nanobiohybrids are capable of efficient delivery of chemotherapeutic agents and of conducting a local real-time therapeutic response from the perspective of personalized cancer treatment. This research implies a huge development in targeted therapy against cancer, and further work has focused on optimizing these biohybrid systems for clinical applications.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":"37 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1088/2399-1984/ad70e6
Callum G Davidson, Rand Abdulrahman, Panida Punnabhum, Michael Cairns, Nicholas J W Rattray, Robin Capomaccio, Kevin Treacher, Yvonne Perrie, Zahra Rattray
Lipid nanoparticles (LNPs) have become a major disruptor within the drug delivery field of complex RNA molecules. The wide applicability of prototype nanomedicines has the potential to fill clinical requirements for use against current untreatable diseases. The uptake and implementation of analytical technologies to evaluate these prototype nanomedicines have not experienced similar growth rates, thus hindering the translation of LNPs. Here, we evaluate a model RNA-LNP formulation with a selection of routine and high-resolution orthogonal analytical techniques across studies on the manufacturing process parameter impact and formulation stability evaluation under refrigerated and ultra-low temperatures. We analysed a model cationic RNA-complexed LNP formulation via the process impact on formulation critical quality attributes, short-term refrigerated stability evaluation and frozen-storage stability using zetasizer dynamic light scattering and nanoparticle tracking analysis. We also evaluated freeze-/thaw-induced stress on LNP formulation using high-resolution field-flow fractionation. Statistical analysis and correlations between techniques were conducted to further enhance our understanding of LNP formulation design and its physicochemical attributes to facilitate LNP formulation clinical translation.
{"title":"The use of orthogonal analytical approaches to profile lipid nanoparticle physicochemical attributes","authors":"Callum G Davidson, Rand Abdulrahman, Panida Punnabhum, Michael Cairns, Nicholas J W Rattray, Robin Capomaccio, Kevin Treacher, Yvonne Perrie, Zahra Rattray","doi":"10.1088/2399-1984/ad70e6","DOIUrl":"https://doi.org/10.1088/2399-1984/ad70e6","url":null,"abstract":"Lipid nanoparticles (LNPs) have become a major disruptor within the drug delivery field of complex RNA molecules. The wide applicability of prototype nanomedicines has the potential to fill clinical requirements for use against current untreatable diseases. The uptake and implementation of analytical technologies to evaluate these prototype nanomedicines have not experienced similar growth rates, thus hindering the translation of LNPs. Here, we evaluate a model RNA-LNP formulation with a selection of routine and high-resolution orthogonal analytical techniques across studies on the manufacturing process parameter impact and formulation stability evaluation under refrigerated and ultra-low temperatures. We analysed a model cationic RNA-complexed LNP formulation via the process impact on formulation critical quality attributes, short-term refrigerated stability evaluation and frozen-storage stability using zetasizer dynamic light scattering and nanoparticle tracking analysis. We also evaluated freeze-/thaw-induced stress on LNP formulation using high-resolution field-flow fractionation. Statistical analysis and correlations between techniques were conducted to further enhance our understanding of LNP formulation design and its physicochemical attributes to facilitate LNP formulation clinical translation.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":"7 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1088/2399-1984/ad523e
Sofia Marchesini, Keith R Paton, Andrew J Pollard
With graphene and related two-dimensional (2D) materials now enhancing products used in everyday life, the scale of industrial production of many different types of 2D nanomaterials requires quality control (QC) processes that can be performed rapidly, non-destructively, in-line and in a cost-effective manner. These materials must be repeatably produced with targeted material properties, to reduce the costs associated with nonconformity of products, and so multiple QC methods that can monitor different material properties are required. Herein, we describe different measurands and associated techniques that either have the potential to be used for QC, or are already being used in this way, whether that off-line, at-line or in-line. The advantages and disadvantages of different techniques are detailed, as well as possible solutions that can ensure confidence in these methods and lead to measurement traceability in this growing industry.
{"title":"Navigating the frontiers of graphene quality control to enable product optimisation and market confidence","authors":"Sofia Marchesini, Keith R Paton, Andrew J Pollard","doi":"10.1088/2399-1984/ad523e","DOIUrl":"https://doi.org/10.1088/2399-1984/ad523e","url":null,"abstract":"With graphene and related two-dimensional (2D) materials now enhancing products used in everyday life, the scale of industrial production of many different types of 2D nanomaterials requires quality control (QC) processes that can be performed rapidly, non-destructively, in-line and in a cost-effective manner. These materials must be repeatably produced with targeted material properties, to reduce the costs associated with nonconformity of products, and so multiple QC methods that can monitor different material properties are required. Herein, we describe different measurands and associated techniques that either have the potential to be used for QC, or are already being used in this way, whether that off-line, at-line or in-line. The advantages and disadvantages of different techniques are detailed, as well as possible solutions that can ensure confidence in these methods and lead to measurement traceability in this growing industry.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":"30 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1088/2399-1984/ad4c33
Christopher Fuchs, Lena Fürst, Hartmut Buhmann, Johannes Kleinlein and Laurens W Molenkamp
We present overlapping top gate electrodes for the formation of gate defined lateral junctions in semiconducting layers as an alternative to the back gate/top gate combination and to the split gate configuration. The optical lithography microfabrication of the overlapping top gates is based on multiple layers of low-temperature atomic layer deposited hafnium oxide, which acts as a gate dielectric and as a robust insulating layer between two overlapping gate electrodes exhibiting a large dielectric breakdown field of . The advantage of overlapping gates over the split gate approach is confirmed in model calculations of the electrostatics of the gate stack. The overlapping gate process is applied to Hall bar devices of mercury telluride in order to study the interaction of different quantum Hall states in the nn′, np, pn and pp′ regime.
{"title":"Overlapping top gate electrodes based on low temperature atomic layer deposition for nanoscale ambipolar lateral junctions","authors":"Christopher Fuchs, Lena Fürst, Hartmut Buhmann, Johannes Kleinlein and Laurens W Molenkamp","doi":"10.1088/2399-1984/ad4c33","DOIUrl":"https://doi.org/10.1088/2399-1984/ad4c33","url":null,"abstract":"We present overlapping top gate electrodes for the formation of gate defined lateral junctions in semiconducting layers as an alternative to the back gate/top gate combination and to the split gate configuration. The optical lithography microfabrication of the overlapping top gates is based on multiple layers of low-temperature atomic layer deposited hafnium oxide, which acts as a gate dielectric and as a robust insulating layer between two overlapping gate electrodes exhibiting a large dielectric breakdown field of . The advantage of overlapping gates over the split gate approach is confirmed in model calculations of the electrostatics of the gate stack. The overlapping gate process is applied to Hall bar devices of mercury telluride in order to study the interaction of different quantum Hall states in the nn′, np, pn and pp′ regime.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":"97 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-28DOI: 10.1088/2399-1984/ad299a
Giovanni Finocchio, Jean Anne C Incorvia, Joseph S Friedman, Qu Yang, Anna Giordano, Julie Grollier, Hyunsoo Yang, Florin Ciubotaru, Andrii V Chumak, Azad J Naeemi, Sorin D Cotofana, Riccardo Tomasello, Christos Panagopoulos, Mario Carpentieri, Peng Lin, Gang Pan, J Joshua Yang, Aida Todri-Sanial, Gabriele Boschetto, Kremena Makasheva, Vinod K Sangwan, Amit Ranjan Trivedi, Mark C Hersam, Kerem Y Camsari, Peter L McMahon, Supriyo Datta, Belita Koiller, Gabriel H Aguilar, Guilherme P Temporão, Davi R Rodrigues, Satoshi Sunada, Karin Everschor-Sitte, Kosuke Tatsumura, Hayato Goto, Vito Puliafito, Johan Åkerman, Hiroki Takesue, Massimiliano Di Ventra, Yuriy V Pershin, Saibal Mukhopadhyay, Kaushik Roy, I- Ting Wang, Wang Kang, Yao Zhu, Brajesh Kumar Kaushik, Jennifer Hasler, Samiran Ganguly, Avik W Ghosh, William Levy, Vwani Roychowdhury, Supriyo Bandyopadhyay
In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries.
在 "超越摩尔定律 "的时代,随着边缘智能的不断提高,采用非常规方法的特定领域计算将变得越来越普遍。同时,采用各种纳米技术将在能源成本、计算速度、减少占地面积、网络弹性和处理能力等方面带来好处。利用纳米技术制定非常规计算路线图以指导未来研究的时机已经成熟,本论文集旨在满足这一需求。作者利用电子自旋、记忆器件、二维纳米材料、纳米磁体和各种动力系统为神经形态计算提供了全面的路线图。他们还论述了其他范例,如伊辛机、贝叶斯推理引擎、使用 p 位的概率计算、内存中的处理、量子存储器和算法、使用 Skyrmions 和自旋波的计算,以及在资源严重受限的环境中用于增量学习和解决问题的大脑启发计算。与基于冯-诺依曼架构的传统布尔计算相比,这些方法具有优势。随着人工智能计算需求的增长速度是电子技术摩尔定律的 50 倍,地平线上将会出现更多非常规的计算和信号处理方法,本路线图将有助于确定未来的需求和挑战。在这个非常肥沃的领域,该领域的专家旨在介绍未来一段时间内将出现的一些非常规计算的主导技术和最有前途的技术。在整体方法中,目标是为巩固该领域和指导未来有影响力的发现提供途径。
{"title":"Roadmap for unconventional computing with nanotechnology","authors":"Giovanni Finocchio, Jean Anne C Incorvia, Joseph S Friedman, Qu Yang, Anna Giordano, Julie Grollier, Hyunsoo Yang, Florin Ciubotaru, Andrii V Chumak, Azad J Naeemi, Sorin D Cotofana, Riccardo Tomasello, Christos Panagopoulos, Mario Carpentieri, Peng Lin, Gang Pan, J Joshua Yang, Aida Todri-Sanial, Gabriele Boschetto, Kremena Makasheva, Vinod K Sangwan, Amit Ranjan Trivedi, Mark C Hersam, Kerem Y Camsari, Peter L McMahon, Supriyo Datta, Belita Koiller, Gabriel H Aguilar, Guilherme P Temporão, Davi R Rodrigues, Satoshi Sunada, Karin Everschor-Sitte, Kosuke Tatsumura, Hayato Goto, Vito Puliafito, Johan Åkerman, Hiroki Takesue, Massimiliano Di Ventra, Yuriy V Pershin, Saibal Mukhopadhyay, Kaushik Roy, I- Ting Wang, Wang Kang, Yao Zhu, Brajesh Kumar Kaushik, Jennifer Hasler, Samiran Ganguly, Avik W Ghosh, William Levy, Vwani Roychowdhury, Supriyo Bandyopadhyay","doi":"10.1088/2399-1984/ad299a","DOIUrl":"https://doi.org/10.1088/2399-1984/ad299a","url":null,"abstract":"In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":"119 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16DOI: 10.1088/2399-1984/ad03b2
Xing Li, Bingcheng Li, Qunfeng Zhang, Xiaonian Li
Abstract Since metal nanoparticles-carbon quantum dots nanocomposites combine the advantages of both carbon quantum dots and metal nanoparticles, they show unique properties and are applied in heterogeneous catalysis. In the nanocomposite catalysts, CODs can act as modifiers to modulate the electronic properties of the metals or produce synergy with the metals. Consequently, the nanocomposite catalysts have good catalytic performance. This paper summarizes the preparation methods of nanocomposite catalysts and focuses on their applications in heterogeneous catalysis. Various specific preparation methods are not only summarized as completely as possible but also are also classified at the macro logic level. The applications of the nanocomposite catalysts in heterogeneous catalysis include photocatalysis, sonocatalysis, electrocatalysis, and thermal catalysis. It also reveals how the nanocomposite catalysts produce excellent catalytic performances in various catalytic reactions. Finally, the existing problems and the direction of future efforts are proposed. It is hoped that this paper will provide a slight reference for the future research of metal nanoparticles-carbon quantum dots nanocomposite catalysts and their application in the field of catalysis.
a:Industrial Catalysis Institute of Zhejiang University of Technology, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Hangzhou, 310032, People’s Republic of China
{"title":"Preparation of Carbon dots-metal nanoparticles Nanocomposites and Their Application in Heterogeneous Catalysis","authors":"Xing Li, Bingcheng Li, Qunfeng Zhang, Xiaonian Li","doi":"10.1088/2399-1984/ad03b2","DOIUrl":"https://doi.org/10.1088/2399-1984/ad03b2","url":null,"abstract":"Abstract Since metal nanoparticles-carbon quantum dots nanocomposites combine the advantages of both carbon quantum dots and metal nanoparticles, they show unique properties and are applied in heterogeneous catalysis. In the nanocomposite catalysts, CODs can act as modifiers to modulate the electronic properties of the metals or produce synergy with the metals. Consequently, the nanocomposite catalysts have good catalytic performance. This paper summarizes the preparation methods of nanocomposite catalysts and focuses on their applications in heterogeneous catalysis. Various specific preparation methods are not only summarized as completely as possible but also are also classified at the macro logic level. The applications of the nanocomposite catalysts in heterogeneous catalysis include photocatalysis, sonocatalysis, electrocatalysis, and thermal catalysis. It also reveals how the nanocomposite catalysts produce excellent catalytic performances in various catalytic reactions. Finally, the existing problems and the direction of future efforts are proposed. It is hoped that this paper will provide a slight reference for the future research of metal nanoparticles-carbon quantum dots nanocomposite catalysts and their application in the field of catalysis.
a:Industrial Catalysis Institute of Zhejiang University of Technology, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Hangzhou, 310032, People’s Republic of China
","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":"170 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136079965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-08DOI: 10.1088/2399-1984/acf822
Arya Rai̇, Simrandeep Kaur, S. Rawat, Inderbir Singh
Gastric cancer is a prominent cause of death globally. The major risk factors responsible for its development include age, H. pylori infection, excessive salt intake, and lack of fruits and vegetables in the diet. It is diagnosed using ultrasound, CT scan, endoscopic biopsy, and by detection of certain biomarkers. The conventional therapies for treatment of gastric cancer include the use of radiations, surgical resection, and chemotherapy. However, there are certain major issues associated with these treatments, like high risk of tumour reoccurrence, drug resistance development, less bioavailability of the drug at target site, rapid drug metabolism and high systemic toxicity due to drug doses. All such limitations of conventional treatments can be overcome with the use of herbal bio-actives as they exhibit less toxicity to normal healthy cells and reduce the risk of tumour recurrence and resistance development. Nano-formulations are developed to aid in targeted drug delivery, and to enhance the solubility, stability, bioavailability, and therapeutic efficacy of phytoconstituents. With the emergence of nanomaterials, different imaging modalities have been integrated into one single platform, and combined therapies with synergetic effects against gastric cancer were established. Moreover, the development of theragnostic strategies with simultaneous diagnostic and therapeutic ability was boosted by multifunctional nanoparticles. The present review discusses about the gastric cancer including its mortality rate, secular trends, pathophysiology, etiology, risk factors, diagnosis, and different treatment approaches with major emphasis on herbal bioactives (quercetin, paclitaxel, resveratrol, curcumin and ginsenosides) and different herbal constituent encapsulated nano-formulations (such as nanoparticles, niosomes, liposomes, nano-emulsion, and micelles). Challenges and future prospects of herbal bioactive encapsulated nano-formulations for the treatment/management of gastric cancers has been included in the later part of the manuscript.
{"title":"Herbal bioactive encapsulated nano-formulations for the treatment of gastric cancer: a concise review","authors":"Arya Rai̇, Simrandeep Kaur, S. Rawat, Inderbir Singh","doi":"10.1088/2399-1984/acf822","DOIUrl":"https://doi.org/10.1088/2399-1984/acf822","url":null,"abstract":"Gastric cancer is a prominent cause of death globally. The major risk factors responsible for its development include age, H. pylori infection, excessive salt intake, and lack of fruits and vegetables in the diet. It is diagnosed using ultrasound, CT scan, endoscopic biopsy, and by detection of certain biomarkers. The conventional therapies for treatment of gastric cancer include the use of radiations, surgical resection, and chemotherapy. However, there are certain major issues associated with these treatments, like high risk of tumour reoccurrence, drug resistance development, less bioavailability of the drug at target site, rapid drug metabolism and high systemic toxicity due to drug doses. All such limitations of conventional treatments can be overcome with the use of herbal bio-actives as they exhibit less toxicity to normal healthy cells and reduce the risk of tumour recurrence and resistance development. Nano-formulations are developed to aid in targeted drug delivery, and to enhance the solubility, stability, bioavailability, and therapeutic efficacy of phytoconstituents. With the emergence of nanomaterials, different imaging modalities have been integrated into one single platform, and combined therapies with synergetic effects against gastric cancer were established. Moreover, the development of theragnostic strategies with simultaneous diagnostic and therapeutic ability was boosted by multifunctional nanoparticles. The present review discusses about the gastric cancer including its mortality rate, secular trends, pathophysiology, etiology, risk factors, diagnosis, and different treatment approaches with major emphasis on herbal bioactives (quercetin, paclitaxel, resveratrol, curcumin and ginsenosides) and different herbal constituent encapsulated nano-formulations (such as nanoparticles, niosomes, liposomes, nano-emulsion, and micelles). Challenges and future prospects of herbal bioactive encapsulated nano-formulations for the treatment/management of gastric cancers has been included in the later part of the manuscript.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45892893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-15DOI: 10.1088/2399-1984/acf0a9
K. Saumya, Susmita Naskar, T. Mukhopadhyay
Two-dimensional materials with a single or few layers are exciting nano-scale materials that exhibit unprecedented multi-functional properties including optical, electronic, thermal, chemical and mechanical characteristics. A single layer of different 2D materials or a few layers of the same material may not always have the desired application-specific properties to an optimal level. In this context, a new trend has started gaining prominence lately to develop engineered nano-heterostructures by algorithmically stacking multiple layers of single or different 2D materials, wherein each layer could further have individual twisting angles. The enormous possibilities of forming heterostructures through combining a large number of 2D materials with different numbers, stacking sequences and twisting angles have expanded the scope of nano-scale design well beyond considering only a 2D material mono-layer with a specific set of given properties. Magic angle twisted bilayer graphene (BLG), a functional variant of van der Waals heterostructures, has created a buzz recently since it achieves unconventional superconductivity and Mott insulation at around 1.1∘ twist angle. These findings have ignited the interest of researchers to explore a whole new family of 2D heterostructures by introducing twists between layers to tune and enhance various multi-physical properties individually as well as their weighted compound goals. Here we aim to abridge outcomes of the relevant literature concerning twist-dependent physical properties of BLG and other multi-layered heterostructures, and subsequently highlight their broad-spectrum potential in critical engineering applications. The evolving trends and challenges have been critically analysed along with insightful perspectives on the potential direction of future research.
{"title":"‘Magic’ of twisted multi-layered graphene and 2D nano-heterostructures","authors":"K. Saumya, Susmita Naskar, T. Mukhopadhyay","doi":"10.1088/2399-1984/acf0a9","DOIUrl":"https://doi.org/10.1088/2399-1984/acf0a9","url":null,"abstract":"Two-dimensional materials with a single or few layers are exciting nano-scale materials that exhibit unprecedented multi-functional properties including optical, electronic, thermal, chemical and mechanical characteristics. A single layer of different 2D materials or a few layers of the same material may not always have the desired application-specific properties to an optimal level. In this context, a new trend has started gaining prominence lately to develop engineered nano-heterostructures by algorithmically stacking multiple layers of single or different 2D materials, wherein each layer could further have individual twisting angles. The enormous possibilities of forming heterostructures through combining a large number of 2D materials with different numbers, stacking sequences and twisting angles have expanded the scope of nano-scale design well beyond considering only a 2D material mono-layer with a specific set of given properties. Magic angle twisted bilayer graphene (BLG), a functional variant of van der Waals heterostructures, has created a buzz recently since it achieves unconventional superconductivity and Mott insulation at around 1.1∘ twist angle. These findings have ignited the interest of researchers to explore a whole new family of 2D heterostructures by introducing twists between layers to tune and enhance various multi-physical properties individually as well as their weighted compound goals. Here we aim to abridge outcomes of the relevant literature concerning twist-dependent physical properties of BLG and other multi-layered heterostructures, and subsequently highlight their broad-spectrum potential in critical engineering applications. The evolving trends and challenges have been critically analysed along with insightful perspectives on the potential direction of future research.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48877500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21DOI: 10.1088/2399-1984/ace9a3
K. Ramya, K. Amreen, I. Pronin, Andrey A Karmanov, N. Yakushova, S. Goel
Conventional methods of detecting hazardous gases and aerated microorganisms were judged unfeasible for use in a point of use environment. The use of a lightweight prototype and an easy fabrication provides significant advantages over conventional gas sensing systems. It would be ideal if scientists could develop relatively small, sensitive gas sensors that could detect trace amounts of biomarker gases and airborne pollutants. In the realm of sensors, microfluidics technology enables the analysis of a small quantity of samples by facilitating the use of a minimum amount of sensor materials. Moreover, the capacity to scrutinise a diminutive sample volume result in a sensor that exhibits prompt responsiveness. However, attaining selectivity towards the target analyte has been a major challenge. With this objective of obtaining specificity in gas sensing, this comprehensive study highlights recent breakthroughs in microfluidic device design and synthesis of sensing materials for selective gas and aerated pollutants. The present review focuses on brief explanation of a microfluidic device design, the substrate material, channel size, shape, deposition, and cleaning methods for synthesis of selective gas sensing materials based on noble metals, semiconductor oxide nanoparticles, and their composites. Further, the gas sensing application of these materials is also discussed in detail. This article is the first to provide an extensive overview of the substrate materials, design fabrication, deposition, and cleaning techniques, microfluidic synthesis of sensing materials for selective gas sensing, and the various detection approaches required for novel and efficient gas sensing analysis using recent microfluidic technology.
{"title":"Emerging trends in microfluidic-assisted nanomaterial synthesis for their high-resolution gas sensing applications","authors":"K. Ramya, K. Amreen, I. Pronin, Andrey A Karmanov, N. Yakushova, S. Goel","doi":"10.1088/2399-1984/ace9a3","DOIUrl":"https://doi.org/10.1088/2399-1984/ace9a3","url":null,"abstract":"Conventional methods of detecting hazardous gases and aerated microorganisms were judged unfeasible for use in a point of use environment. The use of a lightweight prototype and an easy fabrication provides significant advantages over conventional gas sensing systems. It would be ideal if scientists could develop relatively small, sensitive gas sensors that could detect trace amounts of biomarker gases and airborne pollutants. In the realm of sensors, microfluidics technology enables the analysis of a small quantity of samples by facilitating the use of a minimum amount of sensor materials. Moreover, the capacity to scrutinise a diminutive sample volume result in a sensor that exhibits prompt responsiveness. However, attaining selectivity towards the target analyte has been a major challenge. With this objective of obtaining specificity in gas sensing, this comprehensive study highlights recent breakthroughs in microfluidic device design and synthesis of sensing materials for selective gas and aerated pollutants. The present review focuses on brief explanation of a microfluidic device design, the substrate material, channel size, shape, deposition, and cleaning methods for synthesis of selective gas sensing materials based on noble metals, semiconductor oxide nanoparticles, and their composites. Further, the gas sensing application of these materials is also discussed in detail. This article is the first to provide an extensive overview of the substrate materials, design fabrication, deposition, and cleaning techniques, microfluidic synthesis of sensing materials for selective gas sensing, and the various detection approaches required for novel and efficient gas sensing analysis using recent microfluidic technology.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43177559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-06DOI: 10.1088/2399-1984/acde26
Sahar Dinparvar, E. Abamor, Sedanur Oztav, Tugba Gul Inci, Murat Ihlamur, Malahat Baghirova, D. Turgut-Balik, A. Allahverdiyev
In this study, the immunostimulatory and anticancer activities of the doxorubicin (DOX), MCF-7 and MDA-MB-231 breast cancer antigen-loaded polycaprolactone (PCL) nanoparticles (NPs) in combination with survivin recombinant protein (RP) and an alum adjuvant are evaluated in vitro on J774 macrophage, MCF-7 and MDA-MB-231 breast cancer cell lines. A double-emulsion solvent evaporation method was used for encapsulation of DOX and antigens into PCL NPs. The physicochemical characterization of NPs included size, morphology, zeta potential, release profiles and encapsulation efficiencies, analyzed using scanning electron microscopy, a zeta-sizer and UV–vis spectrometry. The cytotoxic and inhibitory effects of NPs were determined using a methyl thiazolyl tetrazolium assay. Immunostimulatory effects of the NPs were detected by Griess reaction and ELISA tests to determine nitric oxide and cytokine levels, respectively. According to the results, DOX and antigen-loaded PCL NPs ranged between 240 nm and 290 nm. Antigen and drug-loaded NPs appear less toxic over macrophage cells in comparison with non-capsulated free agents. In addition, considerable inhibitory effects of antigen and drug-loaded NPs were observed at non-toxic concentrations, such as 25 and 50 μg ml−1, on human mammary cancer cell lines (p⩽ 0.0001). The amount of nitrite released from macrophages that were treated with antigen and DOX-encapsulated PCL NPs, in combination with alum and survivin RP, after 96 h incubation was significantly higher than the control, especially at 50 and 100 μg ml−1, and triggered macrophages to produce high quantities of IL-4 and IL-12 cytokines in contrast to the control. As a result, DOX and antigen-loaded PCL NPs in combination with survivin and alum adjuvant revealed significant immunostimulatory and inhibiting influence on macrophage and breast cancer cells, respectively. The outcomes revealed that antigen and drug-loaded PCL NPs supplemented with survivin RP and an alum adjuvant created an effective platform for the development of nanotechnology-based immunotherapeutic tools to inhibit breast cancer cells. However, these outputs should be supported by further in vivo studies.
{"title":"Evaluation of in vitro immunostimulatory and cytotoxic effects of recombinant survivin protein in combination with doxorubicin and breast cancer antigen-loaded polycaprolactone nanoparticles","authors":"Sahar Dinparvar, E. Abamor, Sedanur Oztav, Tugba Gul Inci, Murat Ihlamur, Malahat Baghirova, D. Turgut-Balik, A. Allahverdiyev","doi":"10.1088/2399-1984/acde26","DOIUrl":"https://doi.org/10.1088/2399-1984/acde26","url":null,"abstract":"In this study, the immunostimulatory and anticancer activities of the doxorubicin (DOX), MCF-7 and MDA-MB-231 breast cancer antigen-loaded polycaprolactone (PCL) nanoparticles (NPs) in combination with survivin recombinant protein (RP) and an alum adjuvant are evaluated in vitro on J774 macrophage, MCF-7 and MDA-MB-231 breast cancer cell lines. A double-emulsion solvent evaporation method was used for encapsulation of DOX and antigens into PCL NPs. The physicochemical characterization of NPs included size, morphology, zeta potential, release profiles and encapsulation efficiencies, analyzed using scanning electron microscopy, a zeta-sizer and UV–vis spectrometry. The cytotoxic and inhibitory effects of NPs were determined using a methyl thiazolyl tetrazolium assay. Immunostimulatory effects of the NPs were detected by Griess reaction and ELISA tests to determine nitric oxide and cytokine levels, respectively. According to the results, DOX and antigen-loaded PCL NPs ranged between 240 nm and 290 nm. Antigen and drug-loaded NPs appear less toxic over macrophage cells in comparison with non-capsulated free agents. In addition, considerable inhibitory effects of antigen and drug-loaded NPs were observed at non-toxic concentrations, such as 25 and 50 μg ml−1, on human mammary cancer cell lines (p⩽ 0.0001). The amount of nitrite released from macrophages that were treated with antigen and DOX-encapsulated PCL NPs, in combination with alum and survivin RP, after 96 h incubation was significantly higher than the control, especially at 50 and 100 μg ml−1, and triggered macrophages to produce high quantities of IL-4 and IL-12 cytokines in contrast to the control. As a result, DOX and antigen-loaded PCL NPs in combination with survivin and alum adjuvant revealed significant immunostimulatory and inhibiting influence on macrophage and breast cancer cells, respectively. The outcomes revealed that antigen and drug-loaded PCL NPs supplemented with survivin RP and an alum adjuvant created an effective platform for the development of nanotechnology-based immunotherapeutic tools to inhibit breast cancer cells. However, these outputs should be supported by further in vivo studies.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46604296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}