Preparation of 3-alkoxy-2-hydroxypropyl ester of 2-ethylhexanoic acid and its application in polymer latexes and coatings

IF 2.3 4区 材料科学 Q2 Chemistry Journal of Coatings Technology and Research Pub Date : 2023-02-22 DOI:10.1007/s11998-022-00741-8
Xinru Zou, Yi-en Yuan, Yong-xin Ji
{"title":"Preparation of 3-alkoxy-2-hydroxypropyl ester of 2-ethylhexanoic acid and its application in polymer latexes and coatings","authors":"Xinru Zou,&nbsp;Yi-en Yuan,&nbsp;Yong-xin Ji","doi":"10.1007/s11998-022-00741-8","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, most of the coalescing aids commonly used in the market contain volatile organic compounds (VOCs) with low boiling point. Herein, we designed and prepared a novel environmentally friendly coalescing aid, 2-ethylhexanoic acid-3-alkoxy-2-hydroxypropyl ester. Under the action of a catalyst, 2-ethylhexanoic acid and alkyl glycidyl ether were used as raw materials for ring-opening esterification reaction, and 2-ethylhexanoic acid-3-alkoxy-2-hydroxypropyl ester was finally generated. We conducted a single-factor experiment and orthogonal experiment L<sub>9</sub>(3<sup>4</sup>) to explore the optimal reaction conditions. The structure of the product was characterized by <sup>1</sup>HNMR and FTIR. The boiling point of the product was determined to be 270–283°C, which was in line with the requirements of the national environmental protection regulations for VOCs. Compared with traditional coalescing aids, the product has low volatility, is not classified as a VOC and is safe and environmentally friendly. The properties of the product were characterized, and the applications of the product in polymer latex and coating were determined. We measured the minimum film-forming temperature (MFFT), atomic force microscopy (AFM), water absorption, scrub resistance, adhesion, color difference, and other properties of the film. The results show that the performance of the new coalescing aid is superior to Texanol (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), which is commonly used in the market, and it has obvious advantages.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"20 4","pages":"1269 - 1283"},"PeriodicalIF":2.3000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-022-00741-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, most of the coalescing aids commonly used in the market contain volatile organic compounds (VOCs) with low boiling point. Herein, we designed and prepared a novel environmentally friendly coalescing aid, 2-ethylhexanoic acid-3-alkoxy-2-hydroxypropyl ester. Under the action of a catalyst, 2-ethylhexanoic acid and alkyl glycidyl ether were used as raw materials for ring-opening esterification reaction, and 2-ethylhexanoic acid-3-alkoxy-2-hydroxypropyl ester was finally generated. We conducted a single-factor experiment and orthogonal experiment L9(34) to explore the optimal reaction conditions. The structure of the product was characterized by 1HNMR and FTIR. The boiling point of the product was determined to be 270–283°C, which was in line with the requirements of the national environmental protection regulations for VOCs. Compared with traditional coalescing aids, the product has low volatility, is not classified as a VOC and is safe and environmentally friendly. The properties of the product were characterized, and the applications of the product in polymer latex and coating were determined. We measured the minimum film-forming temperature (MFFT), atomic force microscopy (AFM), water absorption, scrub resistance, adhesion, color difference, and other properties of the film. The results show that the performance of the new coalescing aid is superior to Texanol (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), which is commonly used in the market, and it has obvious advantages.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2-乙基己酸3-烷氧基-2-羟丙酯的制备及其在聚合物乳液和涂料中的应用
近年来,市场上常用的聚结剂大多含有低沸点的挥发性有机化合物。本文设计并制备了一种新型环保型聚结剂-2-乙基己酸-3-烷氧基-2-羟丙基酯。在催化剂的作用下,以2-乙基己酸和烷基缩水甘油醚为原料进行开环酯化反应,最终得到2-乙基己酸-3-烷氧基-2-羟丙基酯。通过单因素实验和正交实验L9(34)探索最佳反应条件。用1HNMR和FTIR对产物的结构进行了表征。经测定,产品沸点为270-283℃,符合国家环保法规对VOCs的要求。与传统的聚结剂相比,该产品挥发性低,不属于VOC,安全环保。对产物的性能进行了表征,确定了产物在聚合物乳胶和涂料中的应用。我们测量了薄膜的最低成膜温度(MFFT)、原子力显微镜(AFM)、吸水性、耐擦洗性、附着力、色差等性能。结果表明,新型聚结剂的性能优于市场上常用的Texanol(2,2,4-三甲基-1,3-戊二醇单异丁酸酯),具有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Coatings Technology and Research
Journal of Coatings Technology and Research CHEMISTRY, APPLIED-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
4.40
自引率
8.70%
发文量
0
期刊介绍: Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.
期刊最新文献
A parametric distribution model of electrostatic spray rotating bell and application for automobile painting Homogeneous dispersion of cellulose/graphite oxide nanofibers in water-based urushiol coatings with improved mechanical properties and corrosion resistance Temporal variations of surface roughness and thickness of polymer-coated quartz sand Effect of boron nitride modified by sodium tripolyphosphate on the corrosion resistance of waterborne epoxy coating Characterization of synthetic aluminum silicate-coated titanium dioxide photocatalysts as a functional filler
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1