Characterization of synthetic aluminum silicate-coated titanium dioxide photocatalysts as a functional filler

IF 2.3 4区 材料科学 Q2 Chemistry Journal of Coatings Technology and Research Pub Date : 2023-07-05 DOI:10.1007/s11998-023-00794-3
Fumihiko Ohashi
{"title":"Characterization of synthetic aluminum silicate-coated titanium dioxide photocatalysts as a functional filler","authors":"Fumihiko Ohashi","doi":"10.1007/s11998-023-00794-3","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic amorphous aluminum silicates-coated titanium dioxides (AS–T nanocomposites) were synthesized by a hydrothermal reaction of aluminum silicate precursors with various chemical compositions and titanium dioxide suspensions. AS–T nanocomposites showed narrow particle size distributions centered between 1.0 and 2.0 μm and their specific surface areas were ranging from 138 to 209 m<sup>2</sup>/g. Water vapor adsorption isotherms revealed that AS–T nanocomposites with higher Si/Al ratios exhibited high hydrophilicity, as the maximum water adsorption rate reached almost 40 wt%. In methylene blue photocatalytic degradation tests, AS–T nanocomposites with higher Si/Al ratios showed much higher photodegradability than a commercial titanium dioxide, degrading up to 92.7% of methylene blue after 30 min of UV irradiation. A possible mechanism is that a distribution state of Si(Al)–OH and/or Si–OH–Al exposed on the aluminum silicate surface influenced the methylene blue adsorption to the surface, which significantly improved the photodegradation performance. The results of this study indicate that AS–T nanocomposites have the potential to be used as fillers in paints.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"20 5","pages":"1789 - 1794"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-023-00794-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-023-00794-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic amorphous aluminum silicates-coated titanium dioxides (AS–T nanocomposites) were synthesized by a hydrothermal reaction of aluminum silicate precursors with various chemical compositions and titanium dioxide suspensions. AS–T nanocomposites showed narrow particle size distributions centered between 1.0 and 2.0 μm and their specific surface areas were ranging from 138 to 209 m2/g. Water vapor adsorption isotherms revealed that AS–T nanocomposites with higher Si/Al ratios exhibited high hydrophilicity, as the maximum water adsorption rate reached almost 40 wt%. In methylene blue photocatalytic degradation tests, AS–T nanocomposites with higher Si/Al ratios showed much higher photodegradability than a commercial titanium dioxide, degrading up to 92.7% of methylene blue after 30 min of UV irradiation. A possible mechanism is that a distribution state of Si(Al)–OH and/or Si–OH–Al exposed on the aluminum silicate surface influenced the methylene blue adsorption to the surface, which significantly improved the photodegradation performance. The results of this study indicate that AS–T nanocomposites have the potential to be used as fillers in paints.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成硅酸铝包覆二氧化钛光催化剂功能填料的表征
以不同化学成分的硅酸铝前驱体和二氧化钛悬浮液为原料,通过水热反应合成了非晶态硅酸铝包覆二氧化钛纳米复合材料。AS-T纳米复合材料的粒径分布以1.0 ~ 2.0 μm为中心,比表面积在138 ~ 209 m2/g之间。水蒸气吸附等温线表明,高Si/Al比的as - t纳米复合材料具有较高的亲水性,最大吸水率接近40 wt%。在亚甲基蓝光催化降解试验中,具有较高Si/Al比的AS-T纳米复合材料的光降解性比商用二氧化钛高得多,在紫外线照射30分钟后,亚甲基蓝的降解率高达92.7%。可能的机制是暴露在硅酸铝表面的Si(Al) -OH和/或Si -OH - Al的分布状态影响了表面对亚甲基蓝的吸附,从而显著提高了光降解性能。研究结果表明,as - t纳米复合材料具有作为涂料填料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Coatings Technology and Research
Journal of Coatings Technology and Research CHEMISTRY, APPLIED-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
4.40
自引率
8.70%
发文量
0
期刊介绍: Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.
期刊最新文献
A parametric distribution model of electrostatic spray rotating bell and application for automobile painting Homogeneous dispersion of cellulose/graphite oxide nanofibers in water-based urushiol coatings with improved mechanical properties and corrosion resistance Temporal variations of surface roughness and thickness of polymer-coated quartz sand Effect of boron nitride modified by sodium tripolyphosphate on the corrosion resistance of waterborne epoxy coating Characterization of synthetic aluminum silicate-coated titanium dioxide photocatalysts as a functional filler
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1