Multi-level metacognition for adaptive behavior

Marvin Conn , Kenneth M'Bale , Darsana Josyula
{"title":"Multi-level metacognition for adaptive behavior","authors":"Marvin Conn ,&nbsp;Kenneth M'Bale ,&nbsp;Darsana Josyula","doi":"10.1016/j.bica.2018.10.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>Behavior<span> adaptation is an integral aspect for autonomous agents to survive in a world where change is normal. Animals change their foraging routines and socializing habits based on predator risks in their environment. Humans adapt their behavior based on current interests, social norms, stress level, health conditions, upcoming deadlines and various other factors. Artificial agents need to effectively adapt to changes in their environment such that they can quickly adjust their behavior to maintain performance in the changed environment. In this paper, we present a multi-level metacognitive model that allows agents to adapt their behavior in various ways based on the resources available for metacognitive processing. As the agent operates at higher levels of this model, the agent is better equipped to adapt to a wider range of changes. The model has been tested on 2 different applications: (i) a reinforcement learner-based agent trying to navigate and collect rewards in a seasonal grid-world environment and (ii) a convolutional neural network-based agent trying to classify the signals in a </span></span>radio frequency spectrum world and separate them into known modulations and unknown modulations.</p></div>","PeriodicalId":48756,"journal":{"name":"Biologically Inspired Cognitive Architectures","volume":"26 ","pages":"Pages 174-183"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bica.2018.10.006","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologically Inspired Cognitive Architectures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212683X18301439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 4

Abstract

Behavior adaptation is an integral aspect for autonomous agents to survive in a world where change is normal. Animals change their foraging routines and socializing habits based on predator risks in their environment. Humans adapt their behavior based on current interests, social norms, stress level, health conditions, upcoming deadlines and various other factors. Artificial agents need to effectively adapt to changes in their environment such that they can quickly adjust their behavior to maintain performance in the changed environment. In this paper, we present a multi-level metacognitive model that allows agents to adapt their behavior in various ways based on the resources available for metacognitive processing. As the agent operates at higher levels of this model, the agent is better equipped to adapt to a wider range of changes. The model has been tested on 2 different applications: (i) a reinforcement learner-based agent trying to navigate and collect rewards in a seasonal grid-world environment and (ii) a convolutional neural network-based agent trying to classify the signals in a radio frequency spectrum world and separate them into known modulations and unknown modulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
适应性行为的多层次元认知
行为适应是自主主体在变化是常态的世界中生存的一个不可或缺的方面。动物会根据环境中捕食者的风险来改变它们的觅食习惯和社交习惯。人们根据当前的兴趣、社会规范、压力水平、健康状况、即将到来的截止日期和各种其他因素来调整自己的行为。人工智能体需要有效地适应环境的变化,以便在变化的环境中快速调整自己的行为以保持性能。在本文中,我们提出了一个多层次的元认知模型,该模型允许代理根据元认知加工可用的资源以各种方式调整其行为。由于代理在该模型的更高层次上运行,因此代理能够更好地适应更大范围的变化。该模型已经在两种不同的应用中进行了测试:(i)一个基于强化学习的智能体,试图在季节性网格世界环境中导航和收集奖励;(ii)一个基于卷积神经网络的智能体,试图在无线电频谱世界中对信号进行分类,并将它们分为已知调制和未知调制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biologically Inspired Cognitive Architectures
Biologically Inspired Cognitive Architectures COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEN-NEUROSCIENCES
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: Announcing the merge of Biologically Inspired Cognitive Architectures with Cognitive Systems Research. Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
期刊最新文献
Biologically Inspired Cognitive Architectures 2019 - Proceedings of the 10th Annual Meeting of the BICA Society, BICA 2019, Seattle, WA, USA, August 15-18, 2019 How Language Processing can Shape a Common Model of Cognition Application of Registration of Human Vegetative Reactions in the Process of Functional Magnetic Resonance Imaging Reconfigurable Locomotion of Hexapod Robot Based on Inverse Kinematics Methods of Determining Errors in Open-Ended Text Questions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1