D. Neagu, J. Irvine, Jiayue Wang, B. Yildiz, A. Opitz, Juergen Fleig, Yuhao Wang, Jiapeng Liu, Longyun Shen, F. Ciucci, B. A. Rosen, Yongchun Xiao, Kui Xie, Guangming Yang, Zongping Shao, Yubo Zhang, Jakob Michael Reinke, T. A. Schmauss, S. Barnett, R. Maring, V. Kyriakou, Usman Mushtaq, M. N. Tsampas, You-Dong Kim, R. O'Hayre, A. J. Carrillo, T. Ruh, L. Lindenthal, F. Schrenk, C. Rameshan, E. Papaioannou, Kalliopi Kousi, I. Metcalfe, Xiaoxiang Xu, Gang Liu
{"title":"Roadmap on exsolution for energy applications","authors":"D. Neagu, J. Irvine, Jiayue Wang, B. Yildiz, A. Opitz, Juergen Fleig, Yuhao Wang, Jiapeng Liu, Longyun Shen, F. Ciucci, B. A. Rosen, Yongchun Xiao, Kui Xie, Guangming Yang, Zongping Shao, Yubo Zhang, Jakob Michael Reinke, T. A. Schmauss, S. Barnett, R. Maring, V. Kyriakou, Usman Mushtaq, M. N. Tsampas, You-Dong Kim, R. O'Hayre, A. J. Carrillo, T. Ruh, L. Lindenthal, F. Schrenk, C. Rameshan, E. Papaioannou, Kalliopi Kousi, I. Metcalfe, Xiaoxiang Xu, Gang Liu","doi":"10.1088/2515-7655/acd146","DOIUrl":null,"url":null,"abstract":"Over the last decade, exsolution has emerged as a powerful new method for decorating oxide supports with uniformly dispersed nanoparticles for energy and catalytic applications. Due to their exceptional anchorage, resilience to various degradation mechanisms, as well as numerous ways in which they can be produced, transformed and applied, exsolved nanoparticles have set new standards for nanoparticles in terms of activity, durability and functionality. In conjunction with multifunctional supports such as perovskite oxides, exsolution becomes a powerful platform for the design of advanced energy materials. In the following sections, we review the current status of the exsolution approach, seeking to facilitate transfer of ideas between different fields of application. We also explore future directions of research, particularly noting the multi-scale development required to take the concept forward, from fundamentals through operando studies to pilot scale demonstrations.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/acd146","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 6
Abstract
Over the last decade, exsolution has emerged as a powerful new method for decorating oxide supports with uniformly dispersed nanoparticles for energy and catalytic applications. Due to their exceptional anchorage, resilience to various degradation mechanisms, as well as numerous ways in which they can be produced, transformed and applied, exsolved nanoparticles have set new standards for nanoparticles in terms of activity, durability and functionality. In conjunction with multifunctional supports such as perovskite oxides, exsolution becomes a powerful platform for the design of advanced energy materials. In the following sections, we review the current status of the exsolution approach, seeking to facilitate transfer of ideas between different fields of application. We also explore future directions of research, particularly noting the multi-scale development required to take the concept forward, from fundamentals through operando studies to pilot scale demonstrations.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.