{"title":"Non-linear modelling of elastic hysteretic damping in the time domain","authors":"C. Spitas, M. Dwaikat, V. Spitas","doi":"10.24423/AOM.3536","DOIUrl":null,"url":null,"abstract":"Elastic hysteretic damping is defined as the dissipation of energy at a rate that is weakly dependent on frequency of vibration. In this article, we propose that the elastic hysteretic damping can be achieved by a simple modification to the viscous damping model. The proposed modification is based on computing an instantaneous correction factor that recursively depends on the state variables of the system. This correction factor is related to the rate by which the velocity changes with respect to the displacement. The new model compares quite favourably with the other existing solutions in the time-domain and differences between the solutions become evident for higher damping ratios. It is found that the new model predicts consistently the weak variation in the loss factor as a function of frequency. In addition to its simple mathematical formulation, the proposed model is superior to the existing solutions in that it does not require knowledge of the past history of motion neither the knowledge of the excitation frequency and is extensible to any type of loading. Various aspects pertaining to the linearity of the proposed approach are finally discussed.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"72 1","pages":"323-353"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.3536","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 9
Abstract
Elastic hysteretic damping is defined as the dissipation of energy at a rate that is weakly dependent on frequency of vibration. In this article, we propose that the elastic hysteretic damping can be achieved by a simple modification to the viscous damping model. The proposed modification is based on computing an instantaneous correction factor that recursively depends on the state variables of the system. This correction factor is related to the rate by which the velocity changes with respect to the displacement. The new model compares quite favourably with the other existing solutions in the time-domain and differences between the solutions become evident for higher damping ratios. It is found that the new model predicts consistently the weak variation in the loss factor as a function of frequency. In addition to its simple mathematical formulation, the proposed model is superior to the existing solutions in that it does not require knowledge of the past history of motion neither the knowledge of the excitation frequency and is extensible to any type of loading. Various aspects pertaining to the linearity of the proposed approach are finally discussed.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.