Constraining Water Depth Influence on Organic Paleotemperature Proxies Using Sedimentary Archives

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Paleoceanography and Paleoclimatology Pub Date : 2023-06-01 DOI:10.1029/2022PA004533
Devika Varma, K. Hättig, M. V. D. van der Meer, G. Reichart, Stefan Schouten
{"title":"Constraining Water Depth Influence on Organic Paleotemperature Proxies Using Sedimentary Archives","authors":"Devika Varma, K. Hättig, M. V. D. van der Meer, G. Reichart, Stefan Schouten","doi":"10.1029/2022PA004533","DOIUrl":null,"url":null,"abstract":"The TEX86 paleothermometer has been extensively used to reconstruct past sea water temperatures, but it remains unclear which export depths the proxy represents. Here we used a novel approach to better constrain the proxy recording depths by investigating paleotemperature proxies (TEX86, U37K′ ${\\mathrm{U}}_{37}^{{\\mathrm{K}}^{\\prime }}$ , RI−OH and RI−OH′) from two pairs of proximal (<12 km apart) cores from Chilean and Angola margins, respectively. These cores are from steep continental slopes and lower shelves, which leads to a substantial difference in water depth between them despite being closely located. Surprisingly, the deep and the shallow U37K′ ${\\mathrm{U}}_{37}^{{\\mathrm{K}}^{\\prime }}$ records at the Chilean margin show dissimilarities, in contrast to the similar records from the Angola margin, which may be due to post‐depositional alteration at the former sites. In contrast, the TEX86 records were statistically indistinguishable between the sites at both the locations, even though the GDGT [2]/[3] ratio suggests GDGTs derived from potentially different archaeal communities residing at different depths. A short‐lived difference between the TEX86 records is observed during the last glacial period at the Angola margin, possibly due to a contribution of Antarctic Intermediate Waters to the deep site. Modelling suggests that the TEX86 source signal at our core sites reaches its peak abundance at water depths shallower than 350 m. The RI−OH and RI−OH′ records show similar variability as the TEX86 records, although regional differences in their absolute temperature estimates exist. Our approach using proximal sediment cores at steep slopes appears useful to constrain the export depth of organic proxy signals for paleo‐reconstructions.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004533","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The TEX86 paleothermometer has been extensively used to reconstruct past sea water temperatures, but it remains unclear which export depths the proxy represents. Here we used a novel approach to better constrain the proxy recording depths by investigating paleotemperature proxies (TEX86, U37K′ ${\mathrm{U}}_{37}^{{\mathrm{K}}^{\prime }}$ , RI−OH and RI−OH′) from two pairs of proximal (<12 km apart) cores from Chilean and Angola margins, respectively. These cores are from steep continental slopes and lower shelves, which leads to a substantial difference in water depth between them despite being closely located. Surprisingly, the deep and the shallow U37K′ ${\mathrm{U}}_{37}^{{\mathrm{K}}^{\prime }}$ records at the Chilean margin show dissimilarities, in contrast to the similar records from the Angola margin, which may be due to post‐depositional alteration at the former sites. In contrast, the TEX86 records were statistically indistinguishable between the sites at both the locations, even though the GDGT [2]/[3] ratio suggests GDGTs derived from potentially different archaeal communities residing at different depths. A short‐lived difference between the TEX86 records is observed during the last glacial period at the Angola margin, possibly due to a contribution of Antarctic Intermediate Waters to the deep site. Modelling suggests that the TEX86 source signal at our core sites reaches its peak abundance at water depths shallower than 350 m. The RI−OH and RI−OH′ records show similar variability as the TEX86 records, although regional differences in their absolute temperature estimates exist. Our approach using proximal sediment cores at steep slopes appears useful to constrain the export depth of organic proxy signals for paleo‐reconstructions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用沉积档案约束水深对有机古温度近系的影响
TEX86古温度计已被广泛用于重建过去的海水温度,但目前尚不清楚该代理代表的出口深度。通过研究智利和安哥拉两对近端(距离<12 km)岩心的古温标(TEX86、U37K′${\mathrm{U}}_{37}′{{\mathrm{K}}}^{\prime}}$、RI - OH和RI - OH′),我们采用了一种新的方法来更好地约束代理记录深度。这些岩心来自陡峭的大陆斜坡和较低的陆架,这导致了它们之间的水深差异很大,尽管它们位置很近。令人惊讶的是,智利边缘的深部和浅层U37K {\ mathm {U}}_{37} {{\ mathm {K}}}^{\prime}}$记录与安哥拉边缘的相似记录存在差异,这可能是由于前者的沉积后蚀变所致。相比之下,尽管GDGT[2]/[3]比值表明GDGT可能来自生活在不同深度的不同古菌群落,但在这两个地点的TEX86记录在统计上无法区分。在安哥拉边缘的末次冰期,在TEX86记录之间观察到一个短暂的差异,可能是由于南极中间水域对深层地点的贡献。模拟表明,在我们的核心站点,TEX86源信号在水深低于350米的地方达到峰值丰度。RI - OH和RI - OH’记录显示出与TEX86记录相似的变率,尽管它们的绝对温度估计存在区域差异。我们使用陡坡近端沉积物岩心的方法似乎有助于限制古重建中有机替代信号的输出深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
期刊最新文献
Summer and Autumn Insolation as the Pacemaker of Surface Wind and Precipitation Dynamics Over Tropical Indian Ocean During the Holocene: Insights From Paleoproductivity Records and Paleoclimate Simulations Biomarker Evidence for an MIS M2 Glacial‐Pluvial in the Mojave Desert Before Warming and Drying in the Late Pliocene Detecting Paleoclimate Transitions With Laplacian Eigenmaps of Recurrence Matrices (LERM) Palynofloral Change Through the Paleocene‐Eocene Thermal Maximum in the Bighorn Basin, Wyoming Pacific‐Driven Salinity Variability in the Timor Passage Since 1777
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1