Frost Forecasting considering Geographical Characteristics

IF 2.1 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Advances in Meteorology Pub Date : 2022-09-25 DOI:10.1155/2022/1127628
Hyo-Sook Kim, Jong-Min Kim, Sa-Heon Kim
{"title":"Frost Forecasting considering Geographical Characteristics","authors":"Hyo-Sook Kim, Jong-Min Kim, Sa-Heon Kim","doi":"10.1155/2022/1127628","DOIUrl":null,"url":null,"abstract":"Regional accuracy was examined using extreme gradient boosting (XGBoost) to improve frost prediction accuracy, and accuracy differences by region were found. When the points were divided into two groups with weather variables, Group 1 had a coastal climate with a high minimum temperature, humidity, and wind speed and Group 2 exhibited relatively inland climate characteristics. We calculated the accuracy in the two groups and found that the precision and recall scores in coastal areas (Group 1) were significantly lower than those in the inland areas (Group 2). Geographic elements (distance from the nearest coast and height) were added as variables to improve accuracy. In addition, considering the continuity of frost occurrence, the method of reflecting the frost occurrence of the previous day as a variable and the synthetic minority oversampling technique (SMOTE) pretreatment were used to increase the learning ability.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/1127628","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Regional accuracy was examined using extreme gradient boosting (XGBoost) to improve frost prediction accuracy, and accuracy differences by region were found. When the points were divided into two groups with weather variables, Group 1 had a coastal climate with a high minimum temperature, humidity, and wind speed and Group 2 exhibited relatively inland climate characteristics. We calculated the accuracy in the two groups and found that the precision and recall scores in coastal areas (Group 1) were significantly lower than those in the inland areas (Group 2). Geographic elements (distance from the nearest coast and height) were added as variables to improve accuracy. In addition, considering the continuity of frost occurrence, the method of reflecting the frost occurrence of the previous day as a variable and the synthetic minority oversampling technique (SMOTE) pretreatment were used to increase the learning ability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑地理特征的霜冻预报
采用极端梯度增强(XGBoost)技术提高霜冻预报精度,并对区域精度进行了检验,发现区域精度存在差异。将点划分为两组天气变量时,组1为最低温度、湿度和风速较高的沿海气候,组2为相对内陆气候特征。我们计算了两组的准确率,发现沿海地区(第一组)的准确率和召回率得分明显低于内陆地区(第二组)。为了提高准确率,我们添加了地理因素(离最近海岸的距离和高度)作为变量。此外,考虑到霜冻发生的连续性,采用反映前一天霜冻发生作为变量的方法和合成少数过采样技术(SMOTE)预处理来提高学习能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Meteorology
Advances in Meteorology 地学天文-气象与大气科学
CiteScore
5.30
自引率
3.40%
发文量
80
审稿时长
>12 weeks
期刊介绍: Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.
期刊最新文献
Sensitivity of WRF-Simulated 2 m Temperature and Precipitation to Physics Options over the Loess Plateau Analysis of Urban Heat Island Effect in Wuhan Urban Area Based on Prediction of Urban Underlying Surface Coverage Type Change Temporal Dynamics and Trend Analysis of Areal Rainfall in Muger Subwatershed, Upper Blue Nile, Ethiopia Statistical Analysis for the Detection of Change Points and the Evaluation of Monthly Mean Temperature Trends of the Moulouya Basin (Morocco) Ultraviolet Radiation Quasi-Periodicities and Their Possible Link with the Cosmic Ray and Solar Interplanetary Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1