Computing models in high energy physics

Q1 Physics and Astronomy Reviews in Physics Pub Date : 2019-11-01 DOI:10.1016/j.revip.2019.100034
Tommaso Boccali
{"title":"Computing models in high energy physics","authors":"Tommaso Boccali","doi":"10.1016/j.revip.2019.100034","DOIUrl":null,"url":null,"abstract":"<div><p>High Energy Physics Experiments (HEP experiments in the following) have been at least in the last 3 decades at the forefront of technology, in aspects like detector design and construction, number of collaborators, and complexity of data analyses. As uncommon in previous particle physics experiments, the computing and data handling aspects have not been marginal in their design and operations; the cost of the IT related components, from software development to storage systems and to distributed complex e-Infrastructures, has raised to a level which needs proper understanding and planning from the first moments in the lifetime of an experiment. In the following sections we will first try to explore the computing and software solutions developed and operated in the most relevant past and present experiments, with a focus on the technologies deployed; a technology tracking section is presented in order to pave the way to possible solutions for next decade experiments, and beyond. While the focus of this review is on offline computing model, the distinction is a shady one, and some experiments have already experienced contaminations between triggers selection and offline workflows; it is anticipated the trend will continue in the future.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2019.100034","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428319300449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 11

Abstract

High Energy Physics Experiments (HEP experiments in the following) have been at least in the last 3 decades at the forefront of technology, in aspects like detector design and construction, number of collaborators, and complexity of data analyses. As uncommon in previous particle physics experiments, the computing and data handling aspects have not been marginal in their design and operations; the cost of the IT related components, from software development to storage systems and to distributed complex e-Infrastructures, has raised to a level which needs proper understanding and planning from the first moments in the lifetime of an experiment. In the following sections we will first try to explore the computing and software solutions developed and operated in the most relevant past and present experiments, with a focus on the technologies deployed; a technology tracking section is presented in order to pave the way to possible solutions for next decade experiments, and beyond. While the focus of this review is on offline computing model, the distinction is a shady one, and some experiments have already experienced contaminations between triggers selection and offline workflows; it is anticipated the trend will continue in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高能物理中的计算模型
至少在过去的30年里,高能物理实验(HEP实验)在探测器的设计和建造、合作者的数量和数据分析的复杂性等方面一直处于技术的前沿。在以前的粒子物理实验中,计算和数据处理方面在设计和操作中并没有被边缘化;IT相关组件的成本,从软件开发到存储系统,再到分布式复杂的电子基础设施,已经上升到一个需要从实验生命周期的最初时刻就适当理解和规划的水平。在接下来的章节中,我们将首先尝试探索在过去和现在最相关的实验中开发和操作的计算和软件解决方案,重点是部署的技术;提出技术跟踪部分,以便为今后十年的实验和以后的可能解决方案铺平道路。虽然这篇综述的重点是离线计算模型,但它们之间的区别并不明显,一些实验已经经历了触发器选择和离线工作流之间的污染;预计这一趋势将在未来继续下去。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Physics
Reviews in Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
21.30
自引率
0.00%
发文量
8
审稿时长
98 days
期刊介绍: Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.
期刊最新文献
Localization in quantum field theory Deep generative models for detector signature simulation: A taxonomic review Magnetism on frustrated magnet system of Nd2B2O7 (B = Ru, Ir, Hf, Pb, Mo, and Zr): A systematic literature review A photonics perspective on computing with physical substrates Machine learning for anomaly detection in particle physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1